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Abstract—Power distribution systems are geographically 
dispersed by nature. It may be affected by various factors, such as 
vegetation, weather, animal and human behaviors. Present 
response procedures to an outage event massively rely on expert 
experience and thus tend to be time-consuming. Automatic outage 
event detection and classification will help to reduce the 
responding and restoration time. However, this issue is less 
addressed with existing research done in this area. In this applied 
research, a set of waveform pre-processing techniques are first 
proposed to prepare the waveform data for being used as inputs 
to the classification algorithm. Further, a machine learning-based 
algorithm is proposed to classify the outage events according to 
their root causes, e.g. tree contact, animal contact, lightning, etc. 
Available data include three phase current & voltage waveforms 
and contextual information during the distribution system 
outages. The proposed machine learning algorithm takes the 
current and voltage waveforms as direct inputs in search of 
features that humans are unable to capture. Real data provided by 
a distribution company in the East Tennessee region is used to test 
the proposed pre-processing techniques and the classification 
algorithm.  

Index Terms—Waveform pre-processing, outage cause 
classification, machine learning, neural network, distribution 
power system. 

I. INTRODUCTION 
Power distribution systems tend to be affected by various 

factors, such as vegetation, weather, animal, and human 
behaviors, because of its geographically dispersed nature. 
Therefore, a common task at distribution companies is to 
identify the root cause of an outage event. This information 
could provide crucial guidance on how to deal with the outage 
and thus help clear the outage within a short time.  

In present practice, outage data are checked manually, which 
is time-consuming and causes significant delay between outage 
detection and system recovery. In addition, the amount of 
anomalous waveform data is often large such that most of them 
is left unprocessed. An automated algorithm can save significant 
manpower, help with timely system recovery, and make better 
use of the great amount of data. 

This work is to develop a machine learning-based algorithm 
to process outage event recordings and to identify the cause of 
each outage event based on real-world data provided by a 
distribution company in the Eastern Tennessee region. 

The available data set is a collection of outage event 
recordings. Each of these recordings has a cause label. 
Therefore, this problem can be formulated as a classification 
task in which we try to categorize each outage event into one of 

the existing cause classes. An event cause classification 
algorithm can be trained on the past outage event recordings 
such that it should be able to identify the cause of new outage 
events. 

In the field of power system outage event analysis, there are 
a large number of works focusing on affected phase 
identification [1][2][3]. However, there are not many works 
devoted to the root cause identification. Very few of these 
existing works directly process the voltage and current 
waveforms. Instead, they use contextual information [4][5] or 
extracted features from the waveform data [6][7]. Contextual 
information includes weather, affected phase(s), season, event 
time, and interrupting device, etc. Extracted features from 
waveform data include derivative of current and voltage signal, 
energy, amplitude, correlation coefficient, etc. 

For example, in [8], five features, namely self-recoverability, 
zero current time, degree of distortion, transition time (time 
duration from event occurrence to during-event stable stage), 
and waveform randomness, are extracted from the recorded 
waveforms and used as the input to a fuzzy inference system for 
event cause recognition. 

Features that are extracted from waveform data are manually 
and intentionally designed. As a result, these features tend to 
work well only on purposes that they have been designed for but 
are less effective in other circumstances. However, with the 
ever-growing complexity and uncertainty in modern power 
systems, unseen circumstances are emerging continually. To 
address these unseen circumstances, a practical solution is to 
identify some general features. In fact, the waveforms are 
features themselves and should be more informative than any 
manually designed features. In this sense, it should be beneficial 
to include the waveform data as inputs to an event classification 
algorithm, as a crucial complement alongside the manually 
designed features. 

A significant reason why contextual information and 
manually extracted features from waveforms were used instead 
of waveforms themselves is that PMU data cannot offer 
sufficient waveform details. Its sampling rate is typically around 
60Hz, which means only one sample per grid cycle is recorded. 
Using waveforms as a direct source to analyze the cause of 
outage events would require much higher resolution event 
recordings than PMU data. The necessity of high-resolution 
event recordings has already been realized [9] and has been 
implemented in some power systems [10]. These recordings 
with high resolution are called point-on-wave (POW) data, 
featuring a sample rate of 1 kHz or even higher. Unlike PMU 
data, POW data offer much more waveform details including 
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instantaneous phase shift and distortions, and thus can be used 
as a direct source for outage event cause analysis.  

To fill this gap in existing research, this paper works on the 
identification and classification of root causes of distribution 
power system outage events. Real POW current and voltage 
waveforms are directly processed with the proposed algorithm. 

Although real data are realistic and informative, they usually 
come with noise. Therefore, pre-processing is necessary before 
any analysis could be carried out with these data. First, real data 
may contain redundant segments which does not help with event 
cause identification. To locate the useful segments in an event 
recording, a normalized RMS envelope method is adopted in 
[11] to detect the start and end points of an event. This paper 
presents a new approach to deal with this issue. Second, there 
are repetitive recordings caused by a single event being recorded 
simultaneously by different devices. This could become a 
contamination to the training set and test set if not handled 
properly. This paper presents a method to remove the repetitive 
recordings. Third, the data may not be sufficient in quantity to 
train a machine learning algorithm. This paper proposes a 
waveform data augmentation method to enlarge the dataset. 

Convolution neural network (CNN) has achieved huge 
success in image processing. It can be also used to process time-
series data, which can be thought of as 1-D images. The 
approach of 1-D CNN is used in [12] on waveform data for fault 
location. Artificial neural network (ANN) is suitable for 
processing categorical and numerical features. ANN is used to 
deal with contextual information and thus to differentiate 
between tree-caused events and animal-caused events [13]. This 
paper uses CNN and ANN as the backbone of the proposed 
event cause classification algorithm, in which CNN processes 
the current and voltage waveform data and ANN processes a 
group of contextual features. 

The main contributions of this paper are: (1) a set of 
waveform data pre-processing techniques to deal with redundant 
waveform segments, repetitive recordings, and data 
insufficiency; (2) an outage cause classification algorithm based 
on CNN and ANN that takes three phase current and voltage 
waveforms as direct inputs. 

This paper is organized as follows: Section II provides an 
overview of the dataset used in this work; Section III introduces 
a set of waveform data pre-processing procedures; Section IV 
presents the proposed outage cause classification algorithm; 
Section V tests the performance of the proposed algorithm on a 
dataset of real event recordings; Finally, Section VI concludes 
the paper. 

II. OVERVIEW OF THE DATASET 
The data used in this work are real event recordings of year 

2020 provided by a local distribution company in the Eastern 
Tennessee region [10]. The dataset has over three thousand 
recordings in total. Each recording comes with the exact date 
and time of the event, and three phase current and voltage 
waveforms.  All waveforms are POW data with a sample rate of 
3840 Hz, which means 64 data points per grid cycle are 
recorded. The current and voltage waveforms of each recording 
are around 0.5s in length , i.e. 30 system cycles, and contain pre-

event, during-event, and post-event stages. Note that the start 
and end points of these stages are not marked explicitly and need 
to be identified. Each record also has a label indicating the cause 
of this event, although it is inferred by some linemen examining 
the scene of the event and thus could be inaccurate. Possible 
causes include tree contact, animal contact, lightning, equipment 
failure, and weather. Some causes only have very few 
occurrences, and thus do not have sufficient data to train a 
machine learning algorithm. In this work, causes that have more 
than a hundred occurrences in the dataset are retained for further 
analysis. 

 
Fig. 1. Example of an event recording. 

Fig. 1 gives an example of an event recording. The current 
and voltage data are plotted to clearly show the event. In this 
example, first, a single-phase fault occurred on phase C and then 
it developed into a double-phase fault involving phase A-C. This 
event occurred on 6/12/2020 at 10:54:38, and was caused by an 
animal, a bird to be exact, as indicated by the cause label. 

III. WAVEFORM PRE-PROCESSING 
The purpose of the waveform pre-processing procedures 

introduced in the following subsections is not to extract any 
manually designed features, but rather to technically prepare the 
waveform data for being used as direct inputs to the 
classification algorithm.  

A. Waveform Truncation based on Anomaly Detection 
A typical recording contains pre-event, during-event, and 

post-event stages. The pre-event and post-event stages 
correspond to normal states or operation after the isolation of 
faulted grid sections, and thus usually have steady sinusoidal 
waveforms. In contrast, the during-event stage corresponds to 
on-going disturbances and faults, and thus have unsteady or non-
sinusoidal waveforms.  

To help the algorithm better focus on the during-event stage, 
we identify the start and end points of an event with the residual 
component method [14] and the Circular Trajectory Approach 
[16]. The residual component method is to superimpose a cycle 
of waveform onto its previous cycle, and the difference is the 
residual component. The Circular Trajectory Approach is to 
form a circular trajectory in an x-y plane with a sinusoidal signal 
itself and its derivative.  

The start point of an event is set as the first sample point in 
a recording that has a residual greater than a threshold, 
indicating that an anomaly arises. The end point of an event is 
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set as the sample point that meets one of the following 
conditions, whichever comes earlier: 

(1) It is the last sample point that has a residual greater than 
a small threshold, indicating that the system is back to 
normal operation from there on; or 

(2) It is the last sample point that has a circular trajectory 
with a radius greater than a small threshold, indicating 
that this section of the grid is isolated from the main 
system from there on. 

This approach of determining the end point ensures that the 
opening and reclosing processes of the breaker are not included 
in any of the samples. Two cycles of the waveform before the 
start point and after the end point are also included in the 
truncated samples, to represent normal system states and in turn 
to assist the algorithm with capturing the transition between 
normal and abnormal states. 

B. Removal of Repetitive Waveforms 
A single event could be recorded simultaneously by several 

devices from different locations. These event recordings could 
be very similar to each other. If some of them are in the training 
set while others are in the test set, the algorithm will be able to 
correctly classify the test samples simply because it has seen 
similar ones during the training phase, instead of truly extracting 
critical features out of the event recordings. This situation is 
obviously undesired, and can be avoided by only selecting one 
sample out of  a group of recordings that are very similar to each 
other. 

To find similar recordings, a measure of waveform similarity 
is needed. Fig. 2 gives an example of two highly similar 
recordings. Measuring the similarity of waveforms like these 
directly with, for example, Euclidean distance-based methods 
will not work well, because these recordings are similar but not 
exactly the same. They are different in amplitude because the 
two recording devices have different electrical distance from the 
event site. 

  
Fig. 2. Example of two similar recordings. 

In this work, normalization on a per half cycle basis is 
performed to elminate the amplitude difference among 
recordings. Every data point is divided by the maximum 
absolute value of the half cycle it belongs to. This approach of 
normalization is inspired by the scaling transformation used in 
[15]. Note that the normalization procedure described above is 
only for waveform similarity measurement purpose. 

Waveform similarity check is then performed on the 
normalized data with a three-second moving time window. For 
waveforms that are recorded no more than three seconds apart, 
Euclidean distance is calculated between each pair of them. Two 
waveforms are determined as similar if their Euclidean distance 
is less than a threshold. 

A practical issue with recordings of the same event from 
different devices is that they may not be perfectly aligned along 

the time axis. For example, the recording shown in Fig. 2 on the 
left is two sample points ahead of the one on the right, in terms 
of event start point. If they are compaired directly, they would 
be marked as dissimilar, which is incorrect. After examining 
hundreds of event recordings, it is observed that this lead or lag 
along the time axis is typically only a few sample points. 
Therefore, to address this waveform alignment issue, a 
waveform shifting operation is designed to assist the waveform 
similarity check, as shown in Fig. 3. That is, while we compare 
two waveforms A and B, A is shifted by x sample points, where 
x > 0 means A is shifted to the left and vice versa. For every 
integer x in [-16, 16], an Euclidean distance between A and B is 
calculated. The x value that leads to the minimum distance 
between A and B is thus the point of alignment. Therefore, this 
minimum distance is used as the similarity score between 
waveforms A and B.  

 
Fig. 3. Waveform shifting operation. 

In a group of similar recordings, the ideal one to retain is the 
one from the device that has the least electrical distance from the 
event site, which is the most informative recording. Although it 
is usually hard to access the network topology due to security 
concerns of distribution companies, the waveform itself can also 
reveal the electrical distance between the device and the event 
site. The recording of a device that is closer to the event site 
should have larger voltage drop during an event. Consequently, 
in a group of similar recordings, the one with the largest voltage 
drop is retained, while others are excluded. 

C. Waveform Normalization 
The recordings in the dataset have various current levels due 

to different loading conditions. Thus, the absolute amplitude of 
the waveforms does not offer much information regarding the 
cause of the outage event. Useful information for event cause 
classification is rather contained in the shape and the 
fluctuations of the waveforms. In addition, data with unified 
amplitude work better for machine learning algorithms. 
Therefore, normalization is performed to remove the amplitude 
differences while preserving the shape and fluctuations of the 
waveforms. 

In this work, each truncated event recording is normalized 
by dividing the entire sequence with the amplitude of the first 
cycle, i.e. difference of its largest value and smallest value in the 
first cycle. As such, all normalized samples start with a unit 
amplitude. This makes it easier for the algorithm to compare 
different samples. Note that this normalization procedure is for 
preparing the waveform data for the classification algorithm and 
therefore is different from the normalization procedure 
described in subsection III-B. 

D. Waveform Data Augmentation 
Outage event data are hard to obtain because there are not 

many outage events. Especially when compared with the large 
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number of images available for training an image classification 
algorithm, the dataset used in this work is quite small for a 
classification task. To augment the dataset and obtain more 
training data, the following two techniques are developed: (1) 
Flipping the waveform, as shown in Fig. 4. This technique will 
double the data. Note that this operation does not change the 
phase sequence. (2) Alternating the phase sequence of an event 
recording. Specifically, if the original phase sequence is ABC, 
then two other permutations of ABC, that is BCA and CAB, can 
be used to generate new data, as shown in Fig. 5. The other three 
permutations, ACB, BAC, and CBA, are not used because their 
phase rotation is opposite to ABC. This technique will triple the 
data. With these two techniques, the original dataset is enlarged 
by a factor of six. 

 
Fig. 4. Waveform data augmentation technique 1 – flipping the waveform. 

These two techniques have physical interpretations when 
applied to three-phase current and voltage waveforms. An 
anomaly may occur during either the positive half cycle or the 
negative half cycle of a sinusoidal waveform. Also, it may occur 
on any of the phase(s). Therefore, by flipping a waveform or 
alternating the phase sequence, the generated waveforms are still 
realistic. 

Note that these two techniques for data augmentation are 
performed after the partition of the training set and the test set, 
and are only performed on the training set. This is to ensure that 
no test data is seen by the algorithm in the training process either 
in its original or transformed version, for the validity of the 
training and test results. 

E. Event Duration and Affected Phase(s) Identification 
The duration of an event is obtained by taking the time 

interval between the start point and the end point acquired in 
subsection III-A. All event duration data are normalized by 
dividing the largest length of all recordings. 

Then, any of the A, B, and C phases is marked as affected if 
the residual component of its current or voltage waveforms is 
greater than a threshold within the duration of an event. 

IV. WAVEFORM CLASSIFICATION 

A. Feature Selection 
In this work, current and voltage waveforms are used as 

direct inputs to the algorithm after being pre-processed as 
introduced in Section III. At the same time, event duration, 
affected phase(s), season, and daytime / nighttime are selected 
as contextual features. Season, daytime / nighttime, and cause 
labels are textual categorical data, and thus are converted to 
numerical data, which can be processed by a machine learning 
algorithm,  with one-hot encoding. The event durations and 
affected phase(s) are identified, as introduced in subsection III-

E. Event cause labels are used as the ground truth for supervised 
learning.  

 
Fig. 5. Waveform data augmentation technique 2 – alternating phase sequence. 

B. Proposed Classification Algorithm 
A convolutional neural network (CNN) and an artificial 

neural network (ANN) are used to construct a classification 
algorithm and to process the aforementioned waveforms and 
contextual features. The goal here is to identify signature 
patterns for specific event causes, which may appear at any 
position in a continuous waveform recording. Theoretically, a 
signature pattern should always correspond to the same event 
cause, independent of its position in a waveform. Consequently, 
CNN is considered suitable for processing the current and 
voltage waveform data because CNN has the unique properties 
of local connectivity and spatial invariance. In addition, ANN is 
a series of fully connected layers (FC) and is thus suitable for 
processing contextual features.  

 
Fig. 6. Overall structure of the proposed neural network. 

The overall structure of the proposed neural network is 
shown in Fig. 6. Its detailed structure is given in Table I. The 
three-phase current and voltage waveforms, after pre-
processing, are first passed to a group of parallel 1-D 
convolutional layers, where the three-phase current waveforms 
share the same kernels and weights, and the three-phase voltage 
waveforms share another group of kernels and weights. The 
outcomes are concatenated and then passed through a larger 
convolutional layer and two fully connected layers to correlate 
features found in the current and voltage waveforms and all three 
phases. In addition, four contextual features, namely event 
duration, affected phases(s), season, and daytime / nighttime, are 
passed through two fully connected layers. Finally, a fully 
connected layer synthesizes waveform and contextual 
information to obtain the classification result. 
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Table I. Detailed Structure of the Proposed Neural Network 
Block Name Layer Name Structure 

CNN Conv1 

4×1, 8, stride 1 
4×1, 8, stride 1 
4×1, 8, stride 1 
4×1, 8, stride 1 
4×1, 8, stride 1 
4×1, 8, stride 1 

Conv2 9×4, 16, stride 2 

FC (1) FC1_1 40 
FC1_2 20 

FC (2) FC2_1 20 
FC2_2 10 

FC (3) FC3_1 10 
FC3_2 Number of cause classes 

The neural network is trained for 25 epochs with a batch size 
of 10. The optimizer is Adam (learning rate = 0.001, 1 = 0.9, 2 
= 0.999). The loss function is categorical cross entropy. 

V. PERFORMANCE OF THE PROPOSED ALGORITHM 
In this paper, we work on a binary classification task as an 

initial test of the proposed pre-processing techniques and the 
classification algorithm. Event recordings with cause labels of 
‘lightning’ and ‘high wind’ are used. All tests are conducted 
with 5-fold cross validation. For each fold, 80% data are for 
training and 20% are for testing. This percentage refers to the 
dataset before augmentation. 

A. Classification Accuracy 
The performance of the proposed algorithm is compared 

with k-nearest neighbors (k-NN) and ANN. All experiments in 
this subsection are conducted with the augmented dataset. The 
results are shown in Table II. 

Table II. Performance of the Proposed Algorithm 
Features Algorithm Classification Accuracy Variance Best Average 

Contextual  k-NN (k=3) 90.24% 83.90% 10.35 
ANN 87.80% 83.17% 9.16 

Waveform + 
Contextual 

proposed 
CNN + ANN 91.46% 86.82% 6.19 

By using current and voltage waveforms as direct inputs 
alongside contextual features, the proposed algorithm 
outperforms k-NN and ANN and achieves higher classification 
accuracy in event cause identification. The results of the 
proposed algorithm have a smaller variance, which means it 
achieves better consistency. 

B. Contribution of the Augmented Dataset 
Table III. Contribution of the Augmented Dataset 

Training Dataset Classification Accuracy Variance Best Average 
Original dataset 87.80% 83.90% 7.97 

Augmented dataset 91.46% 86.82% 6.19 

To test the effectiveness of the proposed data augmentation 
techniques, the classification algorithm is trained with only the 
original dataset or only the augmented dataset. The result, as 
shown in Table III, indicates that the classification accuracy is 
improved by the augmented dataset. Algorithm consistency is 
also improved, as indicated by a smaller variance. 

VI. CONCLUSION AND FUTURE WORK 
This paper proposed a set of waveform data pre-processing 

techniques to deal with redundant waveform segments, 
repetitive recordings, and data insufficiency. This paper also 
proposed a machine learning-based outage event cause 
classification algorithm. based on CNN and ANN. CNN takes 
the current and voltage waveforms as direct inputs while ANN 
processes the contextual features and synthesizes the waveform 
and contextual information to obtain the final classification 
result. The proposed pre-processing techniques and the 
classification algorithm are tested on real data provided by a 
distribution company in the Eastern Tennessee region. 

Event recordings with other cause labels could be 
investigated in future works. 
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