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Abstract—Short term load forecasting is an essential task that
supports utilities to schedule generating sufficient power for
balancing supply and demand, and can become an attractive
target for cyber attacks. It has been shown that the power
system state estimation is vulnerable to false data injection
attacks. Similarly, false data injection on input variables can
result in large forecast errors. The load forecasting system should
have a protective mechanism to mitigate such attacks. One
approach is to model physical system constraints that would
identify anomalies. This study investigates possible constraints
associated with a load forecasting application. Looking at regional
forecasted loads, we analyze the relation between each zone
through similarity measures used in time series in order to
identify constraints. Comprehensive results for historical ERCOT
load data indicate variation in the measures recognizing the
existence of malicious action. Still, these static measures can not
be considered an efficient index across different scenarios.

Index Terms—Short-term load forecasting, anomaly detection,
physical constraints, time series, statistical indices, similarity
measure.

I. INTRODUCTION

Load forecasting is a critical to provide an efficient decision-
making in power system operation and planning. Among the
load forecasting types, short term load forecasting (STLF)
plays a significant role in achieving economic, reliable, and
secure operating operation. STLF supports a time horizon
ranging from one hour to one week. The primary objective
of the STLF function is to provide load predictions for the
basic generation scheduling functions (unit commitment and
hydroscheduling), for assessing the security of the power
system at anytime point, and timely dispatcher information
[1].

To predict the electric load, there are critical variables
that accurately forecast the load. Many forecasting models
with a wide range of methodologies for STLF are suggested
in the literature. The models are mainly classified into two
groups: statistical techniques, such as, multiple linear re-
gression models (MLR), autoregressive and moving average
(ARMA) models; and artificial intelligence (AI) techniques,
such as, artificial neural network (ANN), fuzzy regression
models, support vector machines (SVMs) [2]. All methods are
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constructed based on input data indicating the independent
variables compatible with the forecasting horizon. In STLF,
the primary inputs may include weather variables, calendar
variables, and the load of the preceding hours [3], [4]. In
[5], [6], the authors consider an additional variable to address
locally increasing (or decreasing) load and the fact that elec-
tricity demand is affected by the temperatures of the preceding
hours, respectively. Therefore, the quantity and quality of
input data be important for an accurate estimation. Smart
grid and renewable energy resources bring opportunities for
improved forecasts by providing sensing and data acquisition
capabilities with high resolution [7]. This work discusses big
data applications and associated implementation issues in load
forecasting.

With these new sources of data, the input data may face
challenges, including measurement device error and cyberat-
tacks (e.g., false data injection) that cause operators to make
improper decisions. The vulnerability analysis for input data
in load forecasting is analyzed in [8]. It is a vital task to check
the quality of input data to guarantee accuracy. Statistical
analysis and information theory [9], machine learning (ML)-
based method [10], [11] are some approaches for anomaly
detection schemes.

As the attackers also benefit from AI and ML methods,
attackers may deploy sophisticated techniques to bypass the
anomaly detection, such as, targeting state estimation and
electricity market application [4], [12], [13]. Although detec-
tion scheme imposes difficulty for the attacker, this may be
overcome by, for example, reinforcing the threat model [14].
To address this issue, physical-based constraints can provide a
stronger obstacle for attacker. Li et al. propose adding inherent
constraints in power system state estimation (SE) [15]. This
idea makes a further constrained problem that needs to be
solved by attackers while satisfying the physical systems’
inherent constraints. In this paper, we seek to deploy a similar
concept that supports building a defense mechanism for STLF
against adversarial attack.

Load forecasts can be represented as a time series, which
offers various tools to identify characteristics. In this regards,
similarity measures can facilitate us to identify physical-based
constraints. The paper’s main contribution is that this is a first
attempt to define a protective mechanism in STLF associated
with these inherent constraints.

The paper is organized as follows: The STLF formulation



and modeling are presented in Section II. Section III presents
the problem statement in STLF capturing the constraints.
Exploring constraints using similarity measures is explained
in Section III. Then, simulation results and observations are
discussed in Section V. Section VI provides some concluding
remarks.

II. SHORT TERM LOAD FORECASTING MODELING

In STLEF, the objective is to estimate the load for a short time
horizon, typically, ranging from the next hour to one week. The
main intention of STLF is an hourly prediction of aggregated
load. In addition, the STLF may focus on forecasting the
daily peak system load, the value of system load at a specific
time of day, hourly or half-hourly of system energy, and
the daily and weekly system energy [1]. In this regard, the
STLF is concerned with scheduling purposes for the most
economic commitment of generation sources consistent with
reliability requirements, operational constraints. Furthermore,
the prediction of load may be used for the assessment power
system security for the off-line network analysis under which
the part of systems may face stress.

The system load is the sum of all the individual demands
in all nodes of power system. Many factors impact the STLF
model of aggregate load. The factors are mainly categorized
into weather, calendar day, economic, social events and other
random factors. So, the dependent variable that needs to be
estimated is aggregate load, and other variables relating to
effective factor categories are considered as independent vari-
ables (explanatory). A practical report indicating independent
variables for different load-serving entities (LSEs) is found in
[16].

The general formulation of STLF is to define a forecasting
function f as y; = f(X;) where y;, and X; are the load
and the independent variables at time ¢. There are many ways
to find f, which are commonly divided into statistical and
Al methods. The former is statistical analysis such as MLR,
ARMA, and exponential smoothing models. An Al approach
may use an ensemble of machine learning algorithms to
forecasts, such as, ANN, fuzzy regression models, SVM and so
on. A high-level comparison of load forecasting techniques is
presented in [2]. In this paper, the MLR is chosen to apply the
proposed methods, although it should be generally applicable
to other techniques. MLR is a broader class of regressions that
encompasses linear and nonlinear regressions with multiple
independent variables X and one dependent variable Y. The
general linear regression model can be defined as

Y =00+5X1+ X+ BXs+---+ 8, Xn+e (1)

where (g, 51, ... are the parameters and € is normal random
error. Note that second or higher-ordered terms of a indepen-
dent variables is equivalent to the first ordered one and it is a
special case of Eq. 1 [5].

A. Vulnerability of independent variables

Some independent variables cannot be easily corrupted as
their values are widely known. This includes calendar variables

(month of the year, day of the week, hour of the day, etc.).
Economic factors are not explicitly expressed in STLF models
due to the longer time scale. Among other variables, weather
factors significantly in the load pattern because many loads
are sensitive to temperatures, such as, heating and cooling.
The temperature data is the most used features in many
STLF models to capture the load behavior. In this case,
the quality of temperature is crucial to STLF accuracy. The
temperature used in the STLF model is an estimated value
where is obtained from commercial weather services or ex-
ternal services/APIs. This also provides a vulnerable area
for data disruptions and false attack injections. Sobhani et
al. suggest temperature anomaly detection with the help of
local load information collected by power companies [17].
Although the detection scheme can be helpful to find the
anomaly in temperature, an attacker who also benefits from Al
methods would be more challenging. The adversarial attack
on temperature data exploited in [8] indicates that STLF
models are quite vulnerable to malicious data in temperature
from online weather services. In addition, an attacker could
manipulate load forecasts in arbitrary directions and cause
significant and targeted damages to system operations.

III. PROBLEM STATEMENT

Considering the temperature as a targeted variable for the
attacker, we investigate constraints to act as a defense mecha-
nism such that the attacker must satisfy these in order to have
a feasible result. Being undetected from system operators is
the primary task for the attacker to generate an adversarial
action. Generally, the attacker’s capability will be limited
for a successful malicious action. That means the difference
between corrupted temperature and actual temperature will be
bounded [8]. Considering H is attacker simulated forecasting
model parameterized by 6. The only constraint here is about
bypassing the detection scheme. Adding the psychical-based
constraints may cause difficulty for the attacker to find a
feasible attack vector. Hence, the problem that the attacker
should solve can be defined as the following optimization
problem

rrgn Hy(X) (2a)
s.t. HX—XHp <e (2b)
g(z) <0 (2¢)

where X, X are the injected and actual temperature data, €
is a threshold value, and p shows different norm according
to detection algorithms. Here we are adding (2c) to (2a) to
represent the psychical-based constraints. The minimization
problem here points out attacker target as decreasing the load
forecast values. The constraint g(z) can be imposed either as
an equality or inequality related to the physical system and
topology. The right side of (2c) may be defined by an upper
bound to deal with various scenarios. The way to find g(z) is
discussed in the next section.



IV. EXPLORING CONSTRAINTS FOR STLF

Power systems follow some physical and topological con-
straints. For instance, output of power metering devices should
ideally capture Kirchhoff’s laws. This action may present a
built-in defense mechanism. Li et al. study potential vul-
nerabilities of ML applied in power systems by proposing
constraints that adversarial examples must satisfy the intrinsic
constraints of physical systems [15]. In power system SE
the physical constraints have already been encoded in the
mathematical model; however Liu et al. propose an approach
that guarantees attacker to pass those constraints in linear case
[12].

The indication of such constraints related to load forecasting
applications has not been investigated in the literature. Since
STLF mainly applies to aggregated load models, the dynamic
of loads that follow the physics law is not easily observed.
To build a set of psychical-based constraints, the spatial
distribution of zones is considered. For example, ERCOT load
map can be separated based on eight different weather zones.
Each zone deploys its weather station to STFL, which may
also represent an aggregate.

Generally speaking, we investigate the relation between the
different zones to derive constraints. In this framework, we
are looking for an index representing forecasted variations
between zones. When an attacker intents to inject false data
into some weather stations (but not all), the malicious action
may be identified by these indices. Here, similarity metrics
applied in clustering time series are inspected to find a relation
between zones. In fact, the goal is to explore the physical-
based constraints between zones g(z) that may be obtained
by these similarity measures.

Definition 1: The similarity measure D(X,Y) between time
series X = {zg,21,...,2n-1} and Y = {yo, Y1, ..., yn-1} is &
function taking two time series as inputs and returning the
distance d between these series [18].

Two common approaches for similarity measure are con-
sidered to deploy as shape-based and feature-based methods.

A. Shape-based approach

Here, distances are based on directly comparing the raw
values and the shape of the series in different manners. That
is, distances compare the overall shape of the series. Due to the
simplicity, the Euclidean distance dgyc and other L, norms
are the most widely used distance measures for time series
clustering. Euclidean distance is invariant when dealing with
changes in the order that time features are presented. The
Euclidean distance is defined as

3)

dgyc =

B. Feature-based approach

The feature-Based method focuses on extracting a set of
features from the data presented in time series and calculating

the similarity between the features instead of using the raw
values of the series.

1) Correlation-based distance: One index is to use the
Pearson’s correlation factor for two time series. The time
series are similar if they are highly correlated, even though
the observed values may be far apart in terms of Euclidean
distance. Based on Pearson’s correlation, Golay et al. suggest
two correlation-based distances for time series X and Y as
follows [19]

dcor1(X,Y)=+/2(1—-COR(X,Y)) (4)
— B

where 5 > 0 is a distance decreasing parameter, and COR
is the correlation between X and Y. It can be observed that
a strong positive correlation results in small-scale correlation-
based distances, which implies high similarity.

2) Autocorrelation-based distance: The other feature-based
method is based on estimated autocorrelation functions. The
autocorrelation function is the normalized autocovariance
function indicating the estimated auto correlation vectors of
two times series as px, and py,, the autocorrelation-based
distances between X and Y is defined as follows [20]

dacr (X,Y) = \/(ﬁXT —pve) Qpxr —pvz)  (6)

where (2 represents weight matrix, and 7" is the sample size.

3) Periodogram-based distance approach: This method
computes the distance between periodograms of two time
series in the frequency domain. A periodogram is an estimate
of the spectral density of a signal. For a stationary time series
process with finite length, the periodogram at the Fourier
frequency w; = (2mj)/N for j = 1,2,...,[N/2] (where
[N/2] is the largest integer less or equal to n/2) is defined
as

N
1 —itw; |2
P,(w) = N|;$t6 d 7
The scaled periodogram distance can be defined as
[N/2] )
dp(X,Y) = | Y [Pa (w;) — Py (w;)] (8)
j=1

The normalized version gives more weight to the shape of
the curve, while the non-normalized contributes to the scale.
Measures based on the autocorrelations and measures based on
the periodogram are related. However, this application could
provide different useful estimation results.

4) Symbolic representation: Transformation of time series
into sequences of discretized symbols can be efficiently pro-
cessed to extract information about the underlying processes.
The Symbolic Aggregate approXimation (SAX) method pro-
posed in [21] allows to investigate the dissimilarity based on
the symbolic representation of time series to find the true
dissimilarity between the original time series. More details
about the procedure are addressed in [21].



V. ILLUSTRATION AND SIMULATION
A. Dataset

The ERCOT area can be categorized based on eight weather
stations, where two West and Far West areas are selected to
apply the proposed methods. The load data is for summer
2020, and it is accessible from the ERCOT website. This
data set includes the overall and individual area load. As
the temperature is an essential variable in STLF modeling,
the temperature data was collected from Automated Surface
Observing Systems (ASOSs) corresponding to the West and
Far West weather stations. After data cleaning steps such
as handling missing values, removing unwanted observations,
particularly for the temperature data set, the recorded load
verse temperature is shown in Fig. 1. As it is clear, high
temperature causes increasing use of demand-side devices such

as air conditioners.
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Fig. 1. Load vs. temperature

B. Correlation Analysis

To explore possible relations between loads in the west and
far west in ERCOT, first, the correlation analysis between load
data is calculated, and results are shown in Fig. 2. Although
the two zones are separated geographically, there is a strong
correlation between these loads. The reason could be the
similarity of weather patterns in each zone that demonstrates
hidden physical associations.
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Fig. 2. West and Far West zone load correlation

C. STLF modeling and results

Two MLR models are applied for STLF modeling since the
impact of temperature data as an independent variable may be
seen explicitly in the formulation. Note that other techniques,
either statistical or AI methods, are applicable in this case. Two
models including interaction effect of independent variables
based on [5] are assumed as

fi=Bo+PLxT+ 1 X H+PBax D+ B3xX LL, (9)
+ B4 X LLa,

fo=PBo+B1 XD xH4+ By x MxT+pBsx MxT?
+ By X M xT?+ By x HxT+ 35 x HxT?

+ B x HxT? (10)

where f;, and f, are the foretasted load models. The model
parameters 5 are obtained based on the least-squares (LS)
method. The variables D, M, and H denote the day of
the week, excluding the weekend, month of the year, and
hour of the day, respectively. 7' is the temperature value, and
LL;, and LLy, express one and two-week lagged load data,
respectively.

Both models consist of continuous variables and categorical
variables. The categorical variables need to be coded into a
series of variables in order to be used in regression modeling.
So, variables D, M, and H are encoded as a constant factor
in the R programming language. The data set is randomly
divided into 70% and 30% for train and test set, respectively.
The models result are shown in Fig. 3. The outcomes indicate
that either f; or fo model could efficiently represent the load
for both zones. A Gaussian noise with zero mean and unit
variance is injected into West zone temperature data to mimic
malicious actions. Then, similarity measure methods for the
forecasted load are applied.

Table I indicates the variation of similarity measure indices
in the presence of the attack. Note that comparing the results
between indices is misleading since each measure carries a
different scale. The similarity measures change when there is
false injection data. Thus, this may be a suitable candidate for
constraints in STLF. Among the methods, the variant in dg 4 x
is the largest. The reason would be distance measure defined
on the symbolic approach creates lower bound corresponding
distance measures defined on the original time series. The vari-
ation in measures is not a constant value and will vary under
different scenarios, such as different Gaussian signals. That
is finding an explicit formula or the upper bound capturing
different scenarios is an essential. In this case, to inject data
with a destructive impact on the STLF, attackers must build
an attack vector to bypass the measures satisfying the STLF
similarity measures .

VI. CONCLUSION

STLF plays an important role in power system operation.
Collecting temperature, as a critical input from online services,
increases the possibility of a malicious action. This paper
examines some physical constraints to address deficiency of
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TABLE I
SIMILARITY MEASURES RESULTS

No False Injection False Injection

Method
No Model fi fa fi fe
decu 110644.5 110587.1 110675.4 110652.9 110602.3
dcor 0.3204611 0.3183464 0.2687631 0.326226  0.2826415
dacr 1.247954 1.146977 1.015968 1.149789 1.040784
dp 0.1336534  0.1309215 0.1109201 0.1273667 0.1091463
dsax 2.004495 1.735943 1.417392 2.454994 1.002247

detection schemes. A new formulation of STLF based on
different spatial coordination is proposed for imposing these
constraints. Similarity measure techniques are applied as con-
straints in the proposed approach. Simulation results indicate
that the applied measures can be applicable for encoding con-
straints when temperature data is corrupted. Distance defined
in symbolic space identifies variation that can represent a strict
constraint following the proposed STLF topology. Since the
exploited measures vary based on scenarios, an attempt to
define the explicit equation representing the constrains or to
realize the upper bound will be investigated for the feature
work. As part of our ongoing work, we are investigating incor-
porating such constraints directly into the learning algorithms
for load forecasting to mitigate cyber attacks.
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