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A B S T R A C T   

Low-income households generally experience a high energy burden; however, the factors influencing energy 
burdens are beyond socio-economics. This study explores the relationships between the multidimensionality of 
community vulnerability factors and energy burden across multiple geospatial levels in the United States. Our 
study found the distribution of energy burden in 2020 showed a great deal of variety, ranging from a minimum of 
2.93 % to a maximum of 30.45 % across 3142 counties. The results of non-spatial and spatial regressions showed 
that the vulnerability ranks of socioeconomic, household composition and disability, minority and language, 
household type and transportation, and COVID mortality rate are significant predictors of energy burdens at the 
national level. However, at the regional level, only socioeconomic, minority and language significantly influence 
energy burdens. Minority and language negatively impact energy burdens except for the South East-Central 
region. Additionally, our analyses highlight the need to consider community vulnerability indicators’ spatial 
homogeneity and heterogeneity. At the national level, only the epidemiological factors index is a spatially ho
mogeneous predictor; on the regional and state level, the spatially homogeneous predictors such as socioeco
nomic status, household composition and disability, and household type and transportation vary by region. Such 
a region-sensitive relationship between energy burden and the predictors indicates spatial heterogeneity. This 
study suggests policy recommendations through the lens of the multidimensionality of community vulnerability 
factors. Implementing flexible national energy policies while making particular energy assistance policies for the 
vulnerable population at the regional or state levels is essential.   

1. Introduction 

1.1. Background 

Energy burden (EB) is the percentage of gross household income 
spent on energy costs [1], which refers to affordability and/or the lack of 
access to reliable energy services. It is linked to negative mental and 
physical health outcomes [2–4]. Higher EB indicates greater chances of 
falling into poverty [5], making trade-offs between utilities and other 
necessities (e.g., heat-or-eat dilemma [6,7]). Many who experience a 
high EB also engage in risky behaviors such as payday lending [8], using 
unsafe energy alternatives like wood and peat [9,10], and more. In the 
United States (U.S.), on average, underserved communities, including 
low-income, Black, Hispanic/Latino, multifamily, women, and renters 

consume less energy but have higher EB than their counterparts [11,12]. 
This disparity in high-energy poverty reflects historical racial, class, 
gender, and housing discrimination patterns, lending and housing pol
icies, healthcare access, and wealth accumulation [2,11,13]. While 
recent studies have widely recognized the impacts of extreme events, 
including natural disasters and the COVID-19 pandemic, on the wors
ened EB of underserved communities [2,11,14], little research has 
demonstrated the multidimensional determinates of EB at multiple 
geospatial levels. This study moves beyond extant energy justice 
research to explain the diverse effects of spatial homogeneity and het
erogeneity of EB and analyze the relationship between community 
vulnerability factors and EB at multiple spatial levels, including state, 
regional, and national levels. 

Understanding how community vulnerability determines EB is a 
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critical step in developing suitable energy justice policies. To examine 
the relationship between community vulnerability and EB, this study 
used the indicators from the U.S. COVID-19 Community Vulnerability 
Index (CCVI) to analyze the multidimensional determinates of EB, 
including social economics, minority status and language, housing 
quality, transportation, and health-related factors. The CCVI is based on 
the U.S. Center for Disease Control (CDC)’s Social Vulnerability Index 
[15] but incorporates COVID-specific vulnerability indicators, including 
epidemiological factors and health system strength, to help identify 
communities that might be at a greater risk in 2020. Specifically, the 
CCVI metric ranks each geography (state, county, or census tract) to one 
another on a 0–1 scale, where zero indicates least vulnerable, and one 
indicates most vulnerable. The CCVI provides opportunities for unique, 
action-oriented solutions to policies for vulnerable communities and to 
assess the equity of current outcomes and responses [16]. Studies using 
the CCVI have examined the impacts of COVID-19 cases, mortalities, 
vaccination rates, stay-at-home orders, crowded housing units, eco
nomic impacts, employment, transportation, natural disasters, and so on 
among vulnerable populations [17]. For example, a study [18] found 
that people in vulnerable communities were 21 % more likely to be 
diagnosed and 47 % more likely to die from COVID-19, unadjusted for 
age and comorbidities. Other researchers [19] also discovered that areas 
with an increase in CCVI index were linked with lower vaccination rates 
in 2020. Using the CCVI index, many studies have found that high 
COVID-19 vulnerability is concentrated in the South of the U.S. 
[18,20,21]. Overall, researchers [21] discovered that most individuals 
in the U.S. lived in moderate to low vulnerability communities, followed 
by high and very high vulnerability. However, little research has used 
the CCVI to examine its relationship with EB. Notably, the relationship 
between health indicators, including individual health conditions and 
the health care system and EB is not often analyzed in the EB literature. 

Meanwhile, the COVID-19 pandemic exacerbated the LMI income 
households’ EB, predominantly minority households, such as African 
American and Hispanic households. According to a survey by Pew 
Research Center [22] in April 2020, the COVID-19 pandemic signifi
cantly influenced job or wage loss. The survey showed 61 % of Hispanic 
American households and 44 % of Black American households experi
enced a job or way loss which significantly increased from the survey 
data in March 2020 (before the pandemic). Moreover, the COVID-19 
pandemic makes some Americans challenging to pay their monthly 
bills. The survey indicated that 48 % of Black adults, 44 % of Hispanic 
adults, and 26 % of white adults can only make partial payments. In 
addition, a few studies [23–25] showed that the COVID-19 pandemic 
had deepened the prevalence of energy insecurity among low-income 
households, and those who require the use of an electronic medical 
device experience higher rates of energy insecurity. Therefore, the 
impact of COVID-19-related variables on EB during 2020 cannot be 
neglected. 

In addition, there is a growing recognition of the need to account for 
multidimensional perspectives in examining EB [11], as EB is linked to 
the interconnected factors of socioeconomics, household composition, 
transportation, health system, and so on. Importantly, EB can be 
considered a manifestation of distributional inequalities, particularly 
spatial inequalities, where space acts as a backdrop for inequalities and 
actively constructs and upholds inequalities [26–28]. Furthermore, the 
effects of predictors on EB are varied spatially and can be separated into 
spatially homogeneous and spatially heterogeneous variables. The 
spatially homogeneous variables impact EB in the target region, while 
the spatially heterogeneous variables have a heterogeneous effect across 
different regions [29]. As such, researchers have explored the impacts of 
spatial inequities on EB at a single level, including country [11,29], and 
city [30–32]. 

The severity of EB presents a distinct phenomenon when examined at 
a different level. The patterns of spatial EB depend on the scale analysis 
employed and the material sites considered [28]. For example, 
approximately 25 % (30.6 million) of U.S. households face a high EB 

(pay >6 % of income), and 13 % (15.9 million) U.S. households face a 
difficult EB situation (pay >10 % of income), whereas 60 % (15.4 
million) of low-income households (LIHs) face a severe EB [12]. At the 
regional level, the East South-Central region (i.e., Alabama, Kentucky, 
Mississippi, and Tennessee) in the U.S. has the highest percentage of 
households with high EB (38 %) compared to other regions 2017 [12]. 
During the 2020 COVID-19 pandemic, the EB in the U.S. demonstrated 
localized spatial and temporal effects at the regional level [11]. For 
example, in the Mountain West and Midwest, EB rose from 2014 and 
2018 to 2020, and rural low-to-moderate income (LMI) households 
spent almost a quarter more on monthly utilities than their urban 
counterparts in 2020. On the city level, census blocks with higher per
centages of poverty, household heads with racial/ethnic minority status, 
and individuals with less than a high school education had higher energy 
use intensities, which experienced poor energy efficiency and a higher 
EB. These studies [11,12] highlight how historically institutionalized 
racial and income segregation has affected the distribution of residential 
energy disparities. 

While it is essential to recognize these EB differences, more research 
is needed to focus on the spatial effects with a systematic multiple spatial 
levels analysis and further identify the spatially homogeneous and het
erogeneous factors contributing to EB. More importantly, little research 
has investigated the influence of interconnected factors of comprehen
sive community vulnerability indexes, such as socioeconomics, house
hold composition, disabilities, minority and language, transportation, 
and epidemiological aspects, on EB. 

1.2. Purpose of the study 

This study attempts to answer three research questions: “What is the 
distribution of EB across various counties, states, and regions during the 2020 
COVID-19 pandemic? “What are the key community vulnerability de
terminants influencing EB? And “What are geospatial patterns, i.e., spatial 
homogeneity and spatial heterogeneity, associated with EB, and does the 
geospatial pattern have a relation with the regional level?” Here we analyze 
the EB situations among the low-to-medium income (LMI) households in 
the U.S. using several nationally representative data sets (see Method). 
Our study provides a unique opportunity to examine the spatial homo
geneity and heterogeneity associated with EB across nine census regions, 
3124 counties, 50 states, and the five highest EB states during the 
COVID-19 pandemic in 2020. 

Additionally, we seek to understand the diverse EB situations that 
community-level factors, including socioeconomics, household compo
sition, minority status, disabilities status, transportation, epidemiolog
ical characteristics, and COVID cases and mortality rates, can explain. 
The 2020 EB is selected because it is the start of the COVID pandemic, 
and it is expected the EB will have differences from the previous period. 
In addition, such public emergency provides a suitable candidate to 
study their effects on EB due to people’s behavior change from either 
mandatory staying-at-home policy or the nature of risk-avoiding. 
Finally, this study wants to understand if the community-level factors 
influence EB still hold despite the influence COVID-19 pandemic. 

2. Methodology 

2.1. Measures 

2.1.1. Dependent variable: annual average energy burden 
The 2020 county-level monthly EB was estimated from the 

2014–2018 county-level LMI annual income (Incomelm
2014− 2018) and 

2020 state-level energy expenditure in electricity, fuel, and natural gas 
(
∑

1
qExplmq

2020), based on a previous EB study [11], as shown in Eq. (1). 
This is mainly because the 2020 EB data was unavailable from the U.S. 
Department of Energy’s Low-Income Energy Affordability Data (LEAD) 
Tool [22]. Therefore, the 2020 energy expenditure was estimated using 
the 2014–2018 county-level energy expenditure data (electricity, fuel, 
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and natural gas) and the energy consumption data, along with the 2020 
county-level energy consumption data. The 2014–2018 county-level 
LMI households’ annual income was estimated by the energy expendi
ture data divided by its EB. Meanwhile, the energy expenditure of 2020 
was calculated by considering the 2014–2018 energy expenditure, 
2014–2018 energy consumption, and 2020 energy consumption. 
Therefore, the 2020 EB can be estimated as follows: 

EB2020
lm =

∑q

1
Exp2020

lmq

Income2014− 2018
lm

=

(
∑q

1
Exp2014− 2018

lq ×
Exp2014− 2018

lmq

Ēxp2014− 2018
lq

×
Con2020

lmq

Con2014− 2018
lmq

)/∑q

1
Exp2014− 2018

lq

EB2014− 2018
l

(1)  

where EBlm
2020was the predicted 2020 EB for the lth county in the mth 

month for LMI households, Explmq
2020 was the energy expenditure for the 

qth source (electricity, fuel, and natural gas) of the lth county in the mth 

month in 2020, and Incomelm
2014− 2018 was the average income of the lth 

county in the mth month during 2014–2018 for LMIs. Explmq
2020 was 

calculated by using energy expenditure for the qth source of the lth 

county during 2014–2018 (Explq
2014− 2018), energy expenditure ratio in 

mth month for the qth source compared with the monthly average 
(Exp2014− 2018

lmq / ¯Exp2014− 2018
lq ), and 2020 state-level residential energy 

consumption ratio for the qth source of the lth county in the mth month 
compared with its counterpart during 2014–2018 (Conlmq

2020/Con
lmq

2014− 2018). Incomelm
2014− 2018 was calculated by using the sum of en

ergy expenditure for the qth source of the lth county during 2014–2018 
divided by EB for the lth county for LMI households (EBl

2014− 2018). The 
estimated monthly EB of 2020 was then averaged to obtain the annual 
average EB. In this study, the used monthly income was assumed to be 
constant. Therefore, the monthly average 2020 EB was equal to the one 
calculated using the 2020 annual energy expenditure divided by the 
2014–2018 average annual income. Historical EB estimations among 
LMIs of 2014–2018 were collected from the LEAD Tool [22], while the 
energy expenditure data was obtained from the U.S. Energy Information 
Administration (EIA) [34]. 

2.1.2. Independent variables: Community Vulnerability Index and COVID- 
related variables 

The independent variables include eight composite indexes, 
including the six themes of the COVID-19 Community Vulnerability 
Index (CCVIs) and the COVID-19 cases and mortality rates, with >40 
variables. Specifically, factors used in this study follow six main themes: 
socioeconomic status (SE), household composition and disability (HD), 
minority and language (ML), household type and transportation (HT), 
epidemiological factors (EF), and healthcare system factors (HS). 
Table 1 summarizs the variables included in each theme. Readers can 
find the details of creating the CCVI composite measure on the website 
CCVI [16]. 

The two COVID-19-related independent variables included the 
accumulative percentages of COVID-19 cases (COVID case rate) and 
COVID-19 mortalities (COVID mortality rate) in 2020. The accumulative 
annual COVID-19 case and mortality rates calculated the county-level 
cases and mortality rates divided by the corresponding population. 
The COVID-19-related variables (COVID-19 case and mortality rates) 
were considered controlled variables given the extreme event of the 
COVID-19 pandemic. However, they are not the main focus of the 
study’s aims but could influence the outcomes of EB. Previous research 
[11,12] had shown that the average EB of 2020 increased after March, 
compared with its counterparts of the five-year average EB of 
2014–2018. This result was consistence with the time that the U.S. 
government issued the Stay-at-Home order (lockdown) on March/19th, 

2020. The increased EB in our analysis might attribute to (1) the Stay-at- 
Home order influencing extra operational household energy (e.g., 

electricity and natural gas) by running HVAC and other necessary 
equipment at home; (2) people who lost their income during the 
pandemic [11]. This result is partly due to the COVID-19 case and 
mortality rates, where the higher the case and mortality rates, the more 
people stay at home or work from home, and more people lose their 
income. 

2.1.3. Definition of regions 
We study EB on the national, regional, and state levels using the 

county level (total of 3142 counites) data. At the national level, this 
study includes all the US states and the mainland of the U.S. except for 
Alaska and Hawaii, that is, the Contiguous US. The regional level con
sists of the nine census regions, i.e., New England, Middle Atlantic, East 
North-Central, West South-Central, South Atlantic, East South-Central, 
West South-Central, Mountain, and Pacific. Similar to the national- 
level analysis, we also included a connected Pacific region in the U.S. 
mainland (Contiguous Pacific region). Table 2 lists the states included in 

Table 1 
Six main themes of the COVID-19 community vulnerability index (CCVI) [16].  

CCVI theme Variables included  

1. Socioeconomic Status (SE)  

(1) Below poverty level  
(2) Unemployment  
(3) Income  
(4) Age 25 or older with no high school 

diploma  
(5) No health insurance  

2. Household Composition and 
Disability (HD)  

(1) Dependent children <18 years of age  
(2) Persons aged 65 years and older  
(3) Civilian with a disability  
(4) Single-parent households  

3. Minority Status and Language 
(ML)  

(1) Race/ethnicity  
(2) English-language proficiency  

4. Housing and Transportation (HT)  

(1) Multi-unit structures  
(2) Mobile homes  
(3) Access to indoor plumbing  
(4) Householdsld without a vehicle  
(5) Crowding (more people than rooms)  
(6) In institutionalized group quarters  

5. Epidemiological risk factors (EF)  

(1) Cardiovascular conditions  
(2) Respiratory conditions  
(3) Immune-compromised  
(4) Obesity  
(5) Diabetes  
(6) Population density  
(7) Influenza and pneumonia death rates  

6. Healthcare system factors (HS)  

(1) The number of hospital beds per 100,000  
(2) Percent of the population with a primary 

care physician  
(3) Health spending per capita  

Table 2 
Name of the states within each census region [12].  

Regions States 

New England Connecticut, Maine, Massachusetts, New Hampshire, Rhode 
Island, Vermont 

Middle Atlantic New Jersey, New York, Pennsylvania 
East North 

Central 
Illinois, Indiana, Michigan, Ohio, Wisconsin 

West North 
Central 

Iowa, Kansas, Minnesota, Missouri, Nebraska, North Dakota, 
South Dakota 

South Atlantic Delaware, DC, Florida, Georgia, Maryland, North Carolina, South 
Carolina, Virginia, West Virginia 

East South 
Central 

Alabama, Kentucky, Mississippi, Tennessee 

West South 
Central 

Arkansas, Louisiana, Oklahoma, Texas 

Mountain Arizona, Colorado, Idaho, Montana, Nevada, New Mexico, Utah, 
Wyoming 

Pacific Alaska, California, Hawaii, Oregon, Washington 
Contiguous 

Pacific 
California, Oregon, Washington  

Z. Shen et al.                                                                                                                                                                                                                                     



Energy Research & Social Science 97 (2023) 102949

4

each region. On the state level, five states having the highest EB were 
considered. Counties in Alaska and Hawaii were excluded from spatial 
analysis because it is hard to test the influence of proximity; these states 
do not border other U.S. states, and in Hawaii, no county borders 
another [35]. 

2.1.4. Data sources 
This study uses publicly and nationally representative available data. 

It includes the COVID-19 CCVI [36], the U.S. Department of Energy’s 
Low-Income Energy Affordability Data (LEAD) [33], energy expenditure 
from the U.S. Energy Information Administration (EIA) [34], John 
Hopkins’ COVID-19 data [37], and the social and demographic data 
from the U.S. Census Bureau American Community Survey (ACS) [38]. 
Links to the data sources used in Eq. (1) are listed in Table 3. The terms 
of Explq

2014− 2018 and Explmq
2014− 2018 come from Item (4); the terms of 

Conlmq
2014− 2018 and Conlmq

2020 come from Items (5), (6), and (7); the term 
EBl

2014− 2018 is from Item (3). 

2.2. Analysis 

A combination of bivariate, multivariate, and non-spatial and spatial 
analysis methods was employed to examine the relationships between 
EB and the eight independent variables (predictors). The analysis in
cludes using both correlations (e.g., the distribution of EB, Pearson 
correlation, and global spatial autocorrelation analysis) and causation 
methods (non-spatial and spatial analysis). First, statistics characteris
tics of both EB and predictors were summarized, where EB was also 
mapped to examine its distribution across different regions. Next, 
Pearson correlation and global spatial autocorrelation analysis (Moran’s 
I) were conducted to test the significance of independent variables and 
spatial effects in EB. Meanwhile, statistical tests, i.e., multicollinearity, 
normality, and heteroskedasticity tests, were performed to show the 
need to consider spatial effects in regression analysis. Lastly, both non- 
spatial and spatial regression analyses were conducted to analyze the 
impact of predictors on EB on the national, regional, and state levels and 
the importance of considering spatial effects. The following sections 
provide a summary of each analytic approach. 

Four different regression models, including the non-spatial regres
sion model, i.e., the ordinary least squares (OLS) regression model, and 
three spatial regression models, i.e., the spatial lag model [39], 
geographically weighted regression (GWR) model [40], and multi-scale 
geographically weighted regression (MGWR) model [41], were used to 

examine the relationships between EB and the predictors. 
The spatial-lag model was used to consider spatially autocorrelated 

residuals by incorporating a spatially-lagged variable to account for 
spatial autocorrelation in the model. However, it does not explicitly 
include spatial non-stationary in the model. GWR and MGWR models 
allow the estimated coefficients to vary spatially, i.e., create a unique 
regression equation for each observation in the studied dataset. The 
GWR mainly considers the non-stationary spatial effects (spatial het
erogeneity), which neglects stationary spatial effects (spatial homoge
neity). The MGWR was developed based on the GWR by considering the 
local impact of each predictor, and it is suitable to examine both spatial 
homogeneity and heterogeneity. Unlike GWR and MGWR, the OLS and 
spatial-lag models estimate a single, global regression model with con
stant coefficients for the considered determinants, i.e., the estimated 
coefficients are the same for all the observations. In this study, EB was 
log-transformed in all the regression analyses to ensure the data were 
normally or symmetrically distributed. Additionally, all the independent 
variables were standardized to make the results comparable in each 
studied region. 

2.2.1. Spatial-lag model 
A spatial-lag model was a spatial regression method to account for 

spatial autocorrelation of the EB, and it added a spatially lagged EB to 
the multiple linear regression model. It can be expressed as [42]: 

yi = ρ
∑n

k=1,k∕=i

wikyk +
∑l

j=0
bjxij + εi (2)  

Where ρ was a spatial autoregressive coefficient; wik was the spatial 
weights of the ith observation due to the remaining kth observation, 
which continuity-based weights can establish (e.g., Queens method) or 
distance-based weights (e.g., distance band weights). 

∑n
k=1,k∕=iwikyk was 

the spatial-lagged term that can be used to identify potential spatial 
effects. This study used the Queens method to generate the weights 
matrix for spatial-lag regressions. 

2.2.2. GWR model 
GWR model was formulated by assuming the estimated coefficients 

were a function of the location (ui,vi) (usually at the centroid co
ordinates of a block) in an OLS model, as shown in Eq. (3) [40]. In such a 
way, the estimated regression coefficients were unique to each location. 

yi =
∑l

j=0
bj(ui, vi)xij + εi (3) 

The estimate bj(ui,vi) involved the calculation of a weights matrix by 
using a distance-based scheme. A kernel function was applied to the 
distance between observations and calibration points, where higher 
weights were assigned to closer observations than those farther away. 
Three kernel functions, i.e., Gaussian, exponential, and bi-square, were 
usually used to estimate the weights matrix. The adaptive bi-square 
kernel function was adopted because Gaussian and exponential kernel 
functions led to non-zero weight for observations even far away. In 
addition, the adaptive bi-square kernel function ensured each group of 
regression coefficients was estimated using the same bandwidth, i.e., the 
same number of nearest neighbors for each observation. The number of 
nearest neighbors, or bandwidth, was determined by the optimal cor
rected Akaike Information Criterion (AICc). The GWR model used a 
constant bandwidth to consider the non-stational effects of independent 
variables (i.e., predictors). 

2.2.3. MGWR model 
The MGWR model extended the GWR model by considering different 

bandwidths and predictors, as shown in Eq. (4). It created an optimal 
bandwidth for each independent variable, allowing some to operate on a 
global scale while others to operate on a local scale [41]. Therefore, the 

Table 3 
Data sources for this study with links.  

Item Source 

(1) COVID-19 cases and morality rate in 
2020 

Coronavirus Resource Center 
(https://coronavirus.jhu.edu/) 

(2) CCVI index 
Precision For COVID 
(https://precisionforcovid.org/ccvi) 

(3) 2014–2018 5-year EB for LMI 

Low-Income Energy Affordability Data 
(LEAD) Tool 
https://www.energy.gov/eere/slsc/ 
maps/lead-tool 

(4) 2014–2018 LMI household 
electricity, fuel, and natural gas 
expenditures ($/month) 

Low-Income Energy Affordability Data – 
LEAD Tool – 2018 Update (https://data. 
openei.org/submissions/573) 

(5) 2014–2018 and 2020 sales of 
electricity to the residential sector 
(103 MWh/month) 

https://www.eia.gov/electricity/data 
/state/ 

(6) 2014–2018 and 2020 sales of fuel to 
the residential sector (103 MWh/ 
month) 

https://www.eia.gov/dnav/pet/pe 
t_cons_psup_dc_nus_mbbl_m.htm 

(7) 2014–2018 and 2020 sales of natural 
gas to the residential sector (103 

MWh/month) 

https://www.eia.gov/dnav/ng/ng_sum_ 
lsum_dcu_nus_m.htm  
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estimated regression coefficient, bbwj(ui,vi), was a function of the band
width of each independent variable. Similar to the GWR model, the 
adaptive bi-square kernel function was used to estimate the weight 
matrix, and the bandwidth was determined by optimal corrected AICc. 

yi =
∑l

j=0
bbwj(ui, vi)xij + εi (4)  

3. Results 

3.1. Distribution of energy burden 

The distribution of EB in 2020 varied spatially. Fig. 1 (a) shows the 
spatial distribution of the annual average EB for 2020. Hot spots (dark 
green indicated severe EB) and cold spots (light green indicated low to 
high EB) scattered over the U.S. and its nine census regions, indicating 
spatial homogeneity and heterogeneity. Generally, the census regions in 
the south part had a higher EB than their counterparts in the north. For 
example, the southeast region experienced the highest average EB of 

11.48 % (the East South-Central region). 
In comparison, the east-north region had a relatively lower EB of 

9.82 % (the East North-Central region). This result indicated spatially 
uneven distribution, i.e., spatial heterogeneity, of EB across different 
census regions. Such an uneven distribution of EB was more noticeable 
when examining the spatial-lagged EB, see Fig. 1 (b). The spatial-lagged 
EB was spatially weighted and used to find potential spatial clusters 
(cold and hot spots) in the data. 

The spatially uneven distribution of EB was significant at the state 
level. Fig. 2 presents each state’s annual average EB for 2020. The five 
states having the highest EB were Mississippi (MS) at 13.48 %, Maine 
(ME) at 13.02 %, Alabama (AL) at 12.97 %, Montana (MT) at 12.69 %, 
and Georgia (GA) at 12.63 %. On the other hand, the five states having 
the lowest EB included New Jersey (NJ) at 6.95 %, Washington (WA) at 
7.05 %, Utah (UT) at 7.23 %, Hawaii (HI) at 7.35 %, and Wyoming (WY) 
at 7.71 %, indicate a 6 % EB reduction compared with the five highest 
states. The estimated EB was consistent with a recent report from the U. 
S. Department of Energy [43] and another recent study [11]. The 
spatially uneven distribution of EB was even more drastic at the county 
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Fig. 1. Spatial distribution of (a) energy burden; and (b) spatially lagged energy burden.  
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level. For example, in New Jersey (NJ), the highest EB was 13.49 %, and 
the lowest was 4.18 %. 

On the other hand, in Alabama, the highest EB was 22.49 %, and the 
lowest was 5.89 %. This result represented the diverse EB pattern with a 
significant level of variety in the U.S. Meanwhile, the diverse EB at the 
state level did not follow any specific statistical distribution, and each 
state is unique. However, one interesting pattern observed from the 
distribution was that a few counties in most states had a relatively higher 
EB than others. Mostly, these counties showed a relatively low income 
and high energy expenditure compared with their neighbor counter
parts. For example, the LMI household in Decatur County, Tennessee, 
has a monthly income of about $1350 with a monthly utility expenditure 
of approximately $215, resulting in an EB of roughly 16 %. On the other 
hand, the neighboring Henderson County has a much lower EB, about 
10 %, thanks to the relatively higher monthly income of about 1500 and 
lower monthly utility expenditure of about $150. 

Table 4 summarizs the mean values of the EB and independent 
variables. Green and orange shaded cells represented their annual 
average EB, smaller and more prominent than the national average 
values. The SE and HD factors followed the EB trend well in most of the 
regions, except for New England, Maine, and Montana. However, the 
relationships between EB and other independent variables were region- 
sensitive, indicating spatial heterogeneity. For example, the Pacific re
gion had a relatively low EB but high levels of ML and HT. 

3.2. Global spatial autocorrelation, multicollinearity, normality, and 
heteroskedasticity 

Table 5 lists the results of the global spatial autocorrelation, Moran’s 
I index. The obtained Moran’s I index was significant (p-value 0.001) 
except for the states of Maine and Montana, which indicates the global 
spatial effects were not negligible. This result was not surprising because 
the spatially lagged EB (see Fig. 1 (b)) showed the existence of spatial 
clusters (hot spots and cold spots). The spatially non-significant of Maine 
and Montana (at the state level) was because of the small sample number 
of counties, which were 15 and 55, respectively. However, they became 
hot spots and were spatially significant on the national and census re
gion levels (see Fig. 1 (b)). This result highlighted the importance of 
conducting multiple-level regional and spatial analyses on EB. 

The multicollinearity, normality, and heteroskedasticity were tested 
using PySAL [39], and the results were also included in Table 5. The 
multicollinearity number was lower than 10, indicating that there were 
no two highly correlated independent variables. The Jarque-Bera test 
was used to examine the normality of the distribution of the errors. It 
tested the combined effects of skewness and Kurtosis. The results 
showed that the non-normal distribution of the errors existed in regions 
on the national level (U.S. and U.S. mainland) and census region level 
(such as Middle Atlantic). 

Additionally, the Koenker-Bassett test was conducted to test the 
heteroskedasticity, i.e., the variance of the error term, and the results 

MS

Avg = 6.95 Avg = 7.05 Avg = 7.23

MS

Avg = 7.35

MS

Avg = 7.71

Avg = 7.92 Avg = 8.02

MS

Avg = 8.06 Avg = 8.28

MS

Avg = 8.83

Avg = 8.96

MS

Avg = 8.98 Avg = 9.01

MS

Avg = 9.07 Avg = 9.07

Avg = 9.27 Avg = 9.51 Avg = 9.52 Avg = 9.54 Avg = 9.62

MS

Avg = 9.69 Avg = 9.71 Avg = 9.72 Avg = 9.81 Avg = 9.81

Avg = 9.95

MS

Avg = 10.06

MS

Avg = 10.07 Avg = 10.09 Avg = 10.14

Avg = 10.28 Avg = 10.34 Avg = 10.46 Avg = 10.59 Avg = 10.60

Avg = 10.63 Avg = 10.89 Avg = 10.99 Avg = 11.12

NJ

MD

IN

MS

Avg = 11.58

Avg = 11.58

3
6
9

WA UT HI WY

3
6
9

NV OR CA MN

3
6
9 WI RI CT NY

3
6
9 IL IA OH VA MA

3
6
9

Fr
eq

ue
nc

y

KS

Energy burden (%)

CO PA TN ID

3
6
9

DE FL NH WV TX

3
6
9 ND NC SD NE KY

3
6
9

AZ MO OK AK VT

3
6
9 AR LA NM SC MI

0 5 10 15 20 250
3
6
9 GA

5 10 15 20 25

MT

5 10 15 20 25

AL

5 10 15 20 25

ME

5 10 15 20 25

MS

Avg = 11.85 Avg = 11.95 Avg = 12.01 Avg = 12.49

Avg = 12.63 Avg = 12.69 Avg = 12.97 Avg = 13.02 Avg = 13.48

Fig. 2. Annual average energy burden counties scale in each state (The histogram of 50 states, except for Washington, DC, was shown in the figure. The abbreviation 
of each state was used to identify it; e.g., NJ represents New Jersey. The states follow the order from the minimum yearly average energy burden to the maximum 
yearly average energy burden. In addition, each state’s annual average energy burden was added to it.) 

Z. Shen et al.                                                                                                                                                                                                                                     



Energy Research & Social Science 97 (2023) 102949

7

showed that the variance of the error terms was not a constant on the 
national and census region levels. On the other hand, the non-normal 
distribution of errors and the variance of error terms highlighted the 
importance of considering spatial effects in the regression analysis on 
the national and census region levels. Finally, Pearson’s correlations 
found that the relationship between EB and the independent variables 
was significant, as shown in Table 6. 

3.3. Regression results of independent variables on EB 

3.3.1. Goodness of fit 
To analyze the relationship between independent variables and EB, 

both non-spatial and spatial regression analyses were performed, 

Table 4 
Mean values of EB and independent variables across regions. 

EB 
(%) SE HD ML HT EF HS

COVID
case rate

(%)

COVID 
mortality rate

(%)
U.S. (50 states) 10.30 0.50 0.50 0.50 0.50 0.50 0.50 6.88 0.12

Contiguous U.S. (49

states)

10.30 0.50 0.50 0.50 0.50 0.50 0.50 6.70 0.12

New England (6 states) 10.80 0.23 0.26 0.37 0.35 0.41 0.16 2.83 0.07

Middle Atlantic (3 

states)

9.06 0.37 0.32 0.47 0.41 0.50 0.65 4.21 0.11

East North Central (5 

states)

9.82 0.41 0.45 0.32 0.38 0.53 0.57 7.06 0.12

West North Central (7 

states)

9.99 0.23 0.47 0.30 0.53 0.42 0.38 8.06 0.11

South Atlantic (9 states) 10.81 0.61 0.47 0.65 0.48 0.52 0.69 5.66 0.11

East South Central (4 

states)

11.48 0.75 0.66 0.41 0.49 0.72 0.58 7.41 0.12

West South Central (4 

states)

10.74 0.64 0.63 0.72 0.59 0.57 0.52 7.06 0.14

Mountain (8 states) 10.11 0.42 0.44 0.57 0.54 0.25 0.25 6.78 0.10

Pacific (5 states) 8.41 0.47 0.43 0.73 0.69 0.28 0.38 7.88 0.05

Contiguous Pacific (3 

states)

7.86 0.49 0.45 0.71 0.65 0.28 0.45 3.97 0.05

Mississippi 13.48 0.84 0.72 0.63 0.59 0.70 0.40 7.78 0.20

Maine 13.02 0.37 0.46 0.18 0.49 0.46 0.18 1.43 0.02

Alabama 12.97 0.75 0.63 0.57 0.41 0.67 0.82 7.45 0.12

Montana 12.69 0.31 0.39 0.26 0.52 0.28 0.05 7.63 0.14

Georgia 12.63 0.73 0.55 0.68 0.56 0.51 0.78 6.59 0.15

*EB = energy burden, SE = socioeconomic status, HD = household composition and disability, ML 
= minority and language, HT = household type and transportation, EF = epidemiological factors, 
HS = health system factors. The green (orange) shaded cells present their mean values are lower 
(higher) than their corresponding national mean values. 

Table 5 
Results of global Moran’s I, multicollinearity, normality, and heteroskedasticity across regions.  

Regions Moran’s I Multicollinearity number Normality 
(Jarque-Bera) 

Heteroskedasticity 
(Koenker-Bassett) 

Value Sig Value Sig Value Sig 

The U.S. –  2.9 202.6 *** 91.7 *** 
The contiguous U.S. 0.51 *** 2.9 225.4 *** 103.2 *** 
New England 0.54 *** 6.0 1.2  3.9  
Middle Atlantic 0.58 *** 4.5 75.2 *** 8.9  
East North Central 0.53 *** 3.4 6.8 * 33.9 *** 
West North Central 0.40 *** 2.5 5.3  29.0 *** 
South Atlantic 0.59 *** 3.9 12.0 ** 17.9 * 
East South Central 0.54 *** 3.0 2.4  6.0  
West South Central 0.40 *** 2.4 80.8 ** 5.9  
Mountain 0.43 *** 3.3 8.1 * 29.5 ** 
Pacific* –  6.1 7.1 * 10.7  
Contiguous Pacific 0.44 *** 3.8 6.5 * 6.6  
Mississippi 0.21 *** 3.0 1.8  3.9  
Maine 0.14  7.1 1.3  7.9  
Alabama 0.29 *** 3.3 0.5  6.2  
Montana − 0.04  3.4 1.2  5.4  
Georgia 0.57 *** 3.8 4.9  6.8  

-Not available due to Alaska and Hawaii being disconnected from the mainland. 
* (P < 0.05), ** (P < 0.01), *** (P < 0.001). 

Table 6 
Pearson’s correlation coefficient.  

CDC themes Covid-19 

Variable Pearson’s correlation 
coeff 

Variable Pearson’s correlation 
coeff 

SE  0.50 *** COVID-19 case 0.04 * 
HD  0.49 *** COVID-19 death 0.21 *** 
ML  − 0.16 ***    
HT  0.31 ***    
EF  0.21 ***    
HS  0.17 ***    

***(P < 0.001), **(P < 0.01), *(P < 0.05). 
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whereas OLS and spatial lag regression analyses were conducted in 
PySAL [44]. In addition, GWR and MGWR analyses were conducted in 
MGWR2.2 [45]. The regression results, summarized by the goodness of 
fit metrics (adjusted R2 (adj. R2) and corrected Akaike Information 
Criteria (AICc)), are shown in Table 7. Relatively high adj. R2 was ob
tained for all the studied regions, and a notable improvement in model 
fit, i.e., higher adj. R2 and lower AICc values were observed from non- 
spatial (OLS) to spatial regression analysis (spatial lag regression, 
GWR, and MGWR). This result highlighted the importance of spatial 
effects in predicting EB. Furthermore, the regional-level regression 
analysis usually had a higher adj. R2 value than its counterpart at the 
national level because EB was more uniform in a small region. 

MGWR has a relatively higher adj. R2 value compared to spatial lag 
regression and GWR on the national and census region levels. This result 
was because MGWR considers spatial homogeneities, i.e., the similarity 
of EB at a location and its surrounding average, and spatial heteroge
neity, i.e., spatial non-stationary. In addition, the local adj. The R2 

values of GWR and MGWR at the national and census region levels were 
compared in Fig. 3. They shared a similar pattern: the East South-Central 
and West North-Central regions had the highest and lowest adj. R2 

values, respectively. This difference may be explained by analyzing the 
EB distribution shown in Fig. 1. The East South-Central region showed 
significant spatial homogeneity (the whole area as a hot spot with minor 
spatial variations). In contrast, the West North-Central region showed a 
checkboard pattern where the low EB counties were scattered among 
high EB counties, indicating a high spatial variation. As a result, the 
spatial lag model had a relatively higher adj. R2 value because a small 
region had more probability of showing spatial homogeneity. 

3.3.2. Impacts of independent variables on energy burden 
This section describes the impacts of our independent variables on 

EB. Table 8 summarizes the regression coefficients for the Contiguous U. 
S. and Appendix I (Tables I-1–I-16) for the remaining regions. At the 
national level, the OLS results showed that the coefficients of all eight 
independent variables are significant (p-value < 0.05) except for the 
COVID case rate (see Table II-1). All the estimated coefficients except for 
minority and language (ML) and COVID case rates were positive, indi
cating that higher values were associated with higher EB. SE has the 
most considerable impact on EB, followed by household composition 
and disability (HD), household type and transportation (HT), and COVID 
mortality rate. At the regional scale, we observed similar OLS results for 
most regions, with some exceptions. For example, ML has a positive 
coefficient in the East South-Central region. In the Middle Atlantic re
gion, EF, HS, and COVID cases and mortality rates had a negative co
efficient but were not statistically significant. This result highlighted the 
regional differences when using the CCVIs and COVID-19-related vari
ables to predict EB. At the state scale, similar variations were observed 
as at the regional scale. The regression coefficients of the spatial lag 
model share a similar trend with the OLS model. All the coefficients of 
spatial weights are positive and significant except Maine (negative). For 
Maine, it had a high and uneven (like checkboard) EB distribution (see 
Fig. 1 (a) and Fig. 2), which leads to the non-significant spatial auto
correlation (see Table 5). 

To examine how the spatial regression coefficients vary, we further 
explored the local regression coefficients of MGWR. The local MGWR 
regression coefficients maps vary in magnitude and significance across 
space; see Fig. 4 for socioeconomic status (SE) and Figs. II-1–II-8 for the 
intercept and other independent variables. The local coefficient maps for 
SE, HD, ML, epidemiological factors (EF), and COVID mortality rates 
were significant predictors of EB on the national level. On the regional 
level, the local coefficient for SE (except New England region) and ML 
(except for a small area in New England region, Middle Atlantic, the East 
South-Central, and the West South-Central) were significant across all 
regions. In addition, local regression coefficients of HD, HT, EF, 
healthcare system factors (HS), and COVID case and mortality rates 
varied by region. It is noted that EB was first log-transformed and then 
normalized along with other independent variables in each studied area. 
Therefore, the regression intercept presents the mean value of the log- 
transformed EB when setting the independent variables to their means 
before normalization. On the national level, the negative intercept co
efficients of the Pacific, East North Central, and Middle Atlantic regions 
demonstrated low mean EB values in these regions. 

To interpret the regression results, our positive regression co
efficients indicate the increase of independent variables leading to the 
rise in EB. The negative regression coefficients mean the increase of the 
independent variables leading to decreased EB. It is expected that the 
rise in CCVI score will increase EB since an area with a higher CCVI score 
means the community is more vulnerable. For example, a higher SE 
coefficient in the CCVI (i.e., lower social and economic status) will in
crease EB and vice versa. On the other hand, the COVID case rate has a 
negative coefficient, indicating the areas with higher COVID-19 case 
rates had a lower EB, which does not mean COVID-19 cases reduced EB. 
For example, New York City in 2020 had a significantly higher rate of 
COVID-19 cases. Still, the city had a lower EB than other areas, which 
shows that many higher social-economic areas had a high rate of COVID 
cases in 2020. COVID mortality rate had a positive coefficient, meaning 
the areas with a higher COVID-19 death rate (generally have poor social- 
economic situations and healthcare systems) lead to higher EBs. COVID- 
19 case and mortality rates were included in the regression analysis of 
EB mainly because (1) they are not the same as CCVI and directly count 
the effects of COVID-19; (2) they are considered critical controlled 
variables for researchers to study similar extreme events on EB. How
ever, COVID-19 related variables are not the central focus of this study 
but were controlled because they could influence the outcomes of EB 
due to staying-at-home orders or people who lost jobs. 

Table 7 
Summary of model fit resultsa  

Region Metric OLS Spatial lag GWR MGWR 

The U.S. dj. R2  0.370 – – – 
ICc  7476.1 – – – 

The contiguous U.S. Adj. R2  0.379 0.536 0.621 0.653 
AICc  7350.2 – 6224.0 5880.6 

New England Adj. R2  0.618 0.685 0.689 0.741 
AICc  134.0 – 126.8 116.0 

Middle Atlantic Adj. R2  0.559 0.618 0.587 0.666 
AICc  311.7 – 309.3 287.1 

East North Central Adj. R2  0.538 0.646 0.647 0.700 
AICc  911.7 – 816.0 756.8 

West North Central Adj. R2  0.274 0.445 0.424 0.513 
AICc  1564.9 – 1462.3 1371.7 

South Atlantic Adj. R2  0.547 0.641 0.708 0.762 
AICc  1211.5 – 1051.6 926.5 

East South Central Adj. R2  0.588 0.699 0.722 0.747 
AICc  719.3 – 615.2 581.8 

West South Central Adj. R2  0.411 0.502 0.535 0.628 
AICc  1093.7 – 1031.5 943.7 

Mountain Adj. R2  0.258 0.508 0.527 0.597 
AICc  722.6 – 628.8 588.3 

Pacific Adj. R2  0.358 – – – 
AICc  408.6 – – – 

Contiguous Pacific Adj. R2  0.468 0.622 0.639 0.715 
AICc  302.3 – 265.1 234.8 

Mississippi Adj. R2  0.581 0.634 0.629 0.581 
AICc  169.9 – 167.2 170.9 

Maine Adj. R2  0.819 0.952 – – 
AICc  22.8 – – – 

Alabama Adj. R2  0.611 0.668 0.650 0.716 
AICc  135.2 – 135.1 123.9 

Montana Adj. R2  0.224 0.307 – – 
AICc  152.9 – – – 

Georgia Adj. R2  0.490 0.705 0.626 0.689 
AICc  352.9 – 323.2 353.9  

a Adj. R2 
= Adjusted R2 and AICc = corrected Akaike Information Criterion. 
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3.3.3. Results of spatially homogeneous and heterogeneous independent 
variables on EB 

To examine the influence ranges of the independent variables on EB, 
the bandwidth of GWR and MGWR were used to determine if they were 
spatially homogeneous or heterogeneous. Table 9 summarizs the 
bandwidths of GWR and MGWR. A spatially homogeneous independent 
variable has a bandwidth close to the entire counties (observations) 
across the studied region, identified by green shading in the table. On 
the other hand, a spatially heterogeneous independent variable has a 
bandwidth of less than the entire county. On the national level, only EF 
is spatially homogeneous. However, independent variables like SE, HD, 
ML, HT, HS, COVID case rate, and COVID mortality rate showed 
different levels of spatially heterogeneous. 

At the regional level, the independent variables of all the studied 
census regions showed some level of spatial homogeneity and hetero
geneity. More importantly, the spatially homogeneous and heteroge
neous independent variables varied from region to region. First, the total 
number of homogeneous independent variables is different. The East 
South-Central and West South-Central regions (total of 3) have the least 
spatially homogeneous independent variables. In contrast, the West 
North-Central region has the most spatially homogeneous independent 

variables (total of 7). The remaining regions have a total of five spatially 
homogeneous independent variables. Usually, the more spatially ho
mogeneous independent variables, the closer their regression result is to 
the OLS [30]. However, the ‘Intercept,’ which represents the effect of 
locations in MGWR, cannot be neglected in the comparison between 
spatial and non-spatial regression results; for example, the West North- 
Central region has seven spatially homogeneous independent variables, 
its adj. As a result, the R2 value of OLS is much smaller than the spatial 
regression models. Second, the homogeneous independent variables are 
varied for the studied regions. For example, HT, EF, and HS were 
spatially homogeneous in the East-South-Central. At the same time, SE, 
ML, EF, COVID cases, and mortality rates were spatially homogeneous in 
the South Atlantic. 

More spatially homogeneous independent variables are expected at 
the state level due to the reduced spatial scale (see Table 9). Similar to 
the regional scale results, the spatially homogeneous and heterogeneous 
independent variables vary from state to state. The differences in 
spatially homogeneous and heterogeneous independent variables on the 
regional and state level indicate that policies to relieve high EB of the 
LMI households must be adjusted across the U.S. This will be discussed 
in the policy implication section. 
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Fig. 3. Local adjusted R2 values on national and census region levels of (a) GWR model and (b) MGWR model.  

Table 8 
Model coefficient and significance summary of the Contiguous U.S.   

OLS Spatial lag GWR MGWR 

Variables Coeff. Sig. Coeff. Sig. Mean Min. Max. %Sig. Mean Min. Max. %Sig. 

(Intercept) 0.000  − 0.001  0.045 − 1.014 1.680 49 − 0.022 − 1.452 1.283 61 
SE 0.345 *** 0.237 *** 0.436 − 0.146 0.923 83 0.417 0.273 0.505 100 
HD 0.178 *** 0.146 *** 0.139 − 0.326 0.681 40 0.112 0.038 0.246 94 
ML − 0.256 *** − 0.195 *** − 0.339 − 1.029 0.243 71 − 0.283 − 0.424 − 0.160 100 
HT 0.119 *** 0.090 *** 0.099 − 0.331 0.482 34 0.078 − 0.507 0.671 28 
EF 0.030 * 0.015  0.041 − 0.132 0.385 15 0.034 0.029 0.038 100 
HS 0.034 * 0.041 ** 0.084 − 0.532 1.123 35 0.106 − 0.154 0.507 52 
COVID case rate − 0.100 *** − 0.086 *** − 0.088 − 0.871 0.402 31 − 0.114 − 0.308 0.020 62 
COVID mortality rate 0.153 *** 0.120 *** 0.070 − 0.413 0.717 24 0.070 0.025 0.119 93 
w_EB – – 0.075 *** – – – – – – – – 

* (P < 0.05), ** (P < 0.01), *** (P < 0.001). 
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4. Discussion 

4.1. Summary of key findings 

This study presents a multiple-level spatial analysis of U.S. LMI 
households’ EB during the COVID-19 pandemic. In addition, we use non- 
spatial and spatial regression methods to better understand the effects of 
the CCVIs and COVID-19 cases and mortality rates on energy burdens. 
We have summarized and discussed the following key findings:  

1. The distribution of energy burden is diverse. Our study suggests the 
diverse distribution of EB in the U.S. in 2020, ranging from a mini
mum of 2.93 % (Alexandria County, Virginia) to a maximum of 
30.45 % (Quitman County, Georgia) across 3142 counties. Given the 
similar weather, and electricity prices, the difference in EB within 
one state across counties could be rather extreme; for example, in 
Alabama, the difference from the smallest to the largest EB was 
16.60 %. The diverse EB was also presented in previous studies 
[12,30]. In the study of EB at the urban scale, Moore and Webb [30] 
found that the lowest and highest EBs in Cincinnati, Ohio, was 0.6 % 
and 19.7 %, respectively. On the other hand, Drehobl et al. [12] 
analyzed 25 urban areas in the U.S. and found that even the first 25th 
percentile LIHs have much higher EB than the first 50th percentile 
LIHs. For example, in San Antonio, Texas, the first 25th percentile 

LIHs have an EB of 21.7 % while the first 50th percentile LIHs is 7.4 
%, where a difference of 14.3 % was observed.  

2. The multidimensionality of community vulnerability influences energy 
burden. As mentioned earlier, the causes of EB are not mainly from 
sociodemographic factors. Our analyses show that EBs are influenced 
by the multidimensionality of the community vulnerability based on 
six indexes of CCVI with >40 indicators, including social vulnera
bility, housing type, transportation access, epidemiological factors, 
and health system strength. Similar to existing literature [11,29–31]. 
This study confirms the importance of socioeconomic and race/ 
ethnicity factors contributing to the LMI households’ EB. However, 
different from the existing EB studies, this study discovers the unique 
relationships between household compositions (e.g., dependent 
children <18 years of age, persons aged 65 years and older, and 
single-parent households) and disability, transportation, and hous
ing types (e.g., lack of vehicle access and crowded housing), and EB. 
Additionally, our study demonstrates EB is positively linked to 
epidemiological factors (e.g., the prevalence of cardiovascular and 
respiratory conditions and the share of the population over age 65) 
and healthcare system factors (e.g., the number of intensive care unit 
beds per 100,000 people, health spending per capita, and the share of 
the population with a primary care physician). Therefore, individual 
factors such as socioeconomic or race/ethnicity are not the only 
variables influencing EB, and societal infrastructure factors, such as 
the health care system, are also closely linked to EB. Due to the close 
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Fig. 4. Local regression coefficients of MGWR for SE at (a) national level; and (b) census region level.  
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relationship of health-related factors with EB in our findings, this 
study recommends researchers use the CCVI to examine the link 
between EB, epidemiological factors, healthcare system factors, and 
people with disabilities.  

3. The key factors influencing energy burden are distinct across regions. 
Depending on the region, the effects of community vulnerability 
factors on EB vary. At the national level, the most significant drivers 
of EB are the variables relating to socioeconomic status (SE), 
household composition and disability (HD), minority and language 
(ML), household type and transportation (HT), and COVID-19 mor
tality rates. At the regional and state levels, however, the significant 
positive drivers are social economics. At the same time, minority and 
language are negative except in the East South-Central region across 
all the U.S. regions. Moreover, the considerable drivers are varied in 
different regions. For example, household composition and disabil
ities positively affect energy burdens in the West South-Central re
gion (e.g., the states of Arkansas, Louisiana, Oklahoma, and Texas) 
while nearly having no impact on the Mountain and East South- 
Central regions (e.g., the states of Alabama, Kentucky, Mississippi, 
Tennessee). On the other hand, household types and transportation 
positively affect EB in the South Atlantic region (e.g., stretches from 
the states of Delaware to Florida) but almost no impact on the Middle 
Atlantic and the West North-Central regions (e.g., the states of New 
York, Pennsylvania, Minnesota). The analysis indicates that the key 
factors varied across the spatial scales, and it is beneficial to conduct 
multiple-spatial scale analyses to identify them across the studied 
regions. In addition, some of the critical factors that are significant at 
the national level may show a negligible effect at the regional level 
and vice versa. For example, the HD, HT, and COVID mortality rate 
variables are significant at the national level but not in the Middle 
Atlantic region. In addition, the COVID mortality rate is not signifi
cant in the East North-Central region; HT is not statistically signifi
cant in the West North-Central and East South-Central regions. This 
finding reflects the effects of spatial scale and regional differences, 
which need attentions because the national-level study may mask 

such regional differences. Therefore, the authors recommend 
analyzing the large spatial scale first and then going to a small one to 
pinpoint such differences. Meanwhile, it is noted that such multiple 
spatial-scale analysis depends on the observations (or the smallest 
scale) in each region. This study used county-level EB as the smallest 
scale, and a smaller scale will be needed, such as census tract level 
EB, if the city-level spatial analysis is desired.  

4. The key factors influencing energy burden show spatial homogeneity and 
heterogenicity across regions. On the national level, only the impact of 
epidemiological factors on energy burden is homogeneous, and all 
other CCVI factors (e.g., SE, HD, ML, HT) are heterogeneous. How
ever, all the CCVI factors at the regional level show spatially ho
mogeneous and heterogeneous levels but are also distinct by region. 
For example, the influence of HT, EF, and HS on EB is homogeneous 
in the East South-Central region (e.g., Alabama, Tennessee). In 
contrast, the effects of SE, HD, ML, HT, EF, HS, and COVID mortality 
rates on energy burdens are homogeneous in similar patterns in the 
West North-Central region (e.g., Iowa, Kansas). The variations of 
spatially homogeneous independent variables in the different areas 
are attributed to other climate conditions, energy prices, population 
distribution, and energy-related policies. Similar spatial homogene
ity and heterogeneity were conducted by previous studies [29,30]. 
For example, Moore and Webb [30] found that the economic factors, 
i.e., medium household income and poverty, are spatially hetero
geneous. In contrast, the social and building physics factors, i.e., non- 
white, gas heat, and two-family, are spatially homogeneous in Cin
cinnati, Ohio (city-level). On the other hand, Mashhoodi et al. [29] 
found that the economic factor, i.e., low income, is spatially homo
geneous. In contrast, the building physics factors, i.e., building age, 
the number of summer days, and the number of frost days, are 
spatially heterogeneous in the Netherlands (national level). The re
sults from the literature also highlight the importance of considering 
spatial scales and location differences, where the spatially homoge
neous variable at the national level is different from the regional 
level or city level. 

Table 9 
Bandwidths of GWR and MGWR. 

Region Model Bandwidth
Total 

counties
Inter
cept

SE HD ML HT EF HS

COVID 
case 
rate

COVID 
mortality 

rate
The 

contiguous

U.S.

GWR 150

3108

MGWR
44 676 765 977 69 3106 221 527 1555

New 

England

GWR 64
67

MGWR 65 44 65 44 50 65 65 65 44

Middle 

Atlantic

GWR 149
150

MGWR 148 64 148 83 148 148 46 148 107

East North 

Central

GWR 292
437

MGWR 49 322 246 433 436 433 195 436 436

West North 

Central

GWR 272
618

MGWR 43 598 533 593 570 617 617 106 613

South 

Atlantic

GWR 100
588

MGWR 43 587 47 587 91 587 43 496 587

East South 

Central

GWR 147
364

MGWR 151 67 146 117 356 234 335 148 67

West South 

Central

GWR 169
470

MGWR 48 205 469 48 140 469 169 467 70

Mountain
GWR 128

281
MGWR 43 280 259 280 50 246 128 239 99

Contiguous 

Pacific 

GWR 84
133

MGWR 43 132 123 95 132 132 55 65 121

Mississippi
GWR 81

81
MGWR 78 80 80 44 80 59 67 78 63

Alabama
GWR 66

67
MGWR 61 65 65 46 65 48 50 61 44

Georgia
GWR 103

159
MGWR 44 157 157 157 142 157 155 157 93

*The results of Maine and Montana are unavailable because the counties in each are less than the 
minimum number of observations to run GWR and MGWR. However, the green-shaded cells indi
cate the corresponding independent variables are homogeneous in the studied regions. 
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4.2. Limitations and future study 

There are several limitations to the present study that could inspire 
future research. First, the mixed measurement of minority status and 
language fluency in the CCVI index requires attentions. The quantitative 
relationship between EB and the ML index varies regionally and presents 
this study’s multiple regional and spatial effects. However, the mixed 
measurement of these two variables requires further explored. Our study 
found a negative correlation between minority and language and EB, 
which contradicts previous research focusing on only minority status. 
The negative coefficient in our study is mainly because the ML index in 
the CCVI data is the weighted average scores of minority status and 
English fluency. The combined measurement of race/ethnicity and 
language skill into one ML index might bias the analysis of EB. Future 
research should separate these two variables or use race/ethnicity as the 
independent variable, similar to some existing studies. For example, 
Drehobl et al. [12], Chen et al. [11], and others [25,30,46] found that 
underrepresented minorities (non-white) such as African Americans and 
Hispanics have much higher EBs than other race/ethnicity. Second, this 
study only focuses on the effects of household energy expenditure on 
electricity, fuel, and natural gas; however, future research can investi
gate other household expenditure burdens connected with EB, such as 
expenses for rent, medicine, food, transportation, and since LIHs may be 
forced trade-offs between energy expenditure and other necessities. 
Third, although this study does not consider particular energy policies 
and building energy efficiency features, future research should consider 
adding these variables with national representative data. Finally, this 
study only investigates the combined effects of the major themes from 
the CCVI index. Future research should explore the influence of each 
variable of the CCVI to understand better the independent impact of key 
variables contributing to EB. For example, it might be helpful for re
searchers to analyze health-related factors carefully, e.g., how the 
prevalence of cardiovascular and respiratory conditions and the share of 
the population over age 65 or the health care system influence EB. In 
addition, it might be helpful to explore whether poverty, minority status, 
English skills, lack of transportation, housing type, disability status, or 
seminar over 65 or connected factors on EBs are more likely to 
contribute to EB. 

On the other hand, the CCVI is critical in understanding how 
vulnerable communities at census tract, county, state, or regional level 
suffer from EB and identifying whether energy costs burden a vulnerable 
community due to people do not have equitable access to health care, 
transportation, affordable housing, or secure employment, etc. There
fore, CCVI is strongly recommended in EB analysis. Finally, this study 
did not analyze the role of utilities; future researchers should analyze the 
impacts of utility policy (e.g., the utility disconnection act) on the EB of 
LIHs. 

5. Policy implications 

Our study highlights the importance of considering the multidi
mensionality of community vulnerability factors and the consideration 
of spatial homogeneity and heterogeneity in analyzing EB. We propose 
four critical recommendations to enhance energy burdens in low-income 
communities:  

1. Improve the accessibility of low-income energy efficiency programs and 
weatherization. Our research suggests the highest EB is in the south
eastern region, which provides some policy recommendations for the 
regional level. For example, the low-income home energy assistance 
program (LIHEAP) and the weatherization assistance program 
(WAP) at the national level aim to improve residents’ EBs through 
bill payment assistance and energy efficiency measures needed to 
enhance public awareness regarding program content and actions 
that customers can take. Experts have also raised the issue of pro
gram efficacy [47,48]. The point of distributional equity that relies 

on a standard federal poverty line and economy food plan to deter
mine the edibility of energy assistance programs requires revaluation 
by including more low-income residents experiencing energy 
poverty. Additionally, local government can invest more money to 
improve current weatherization and energy efficiency retrofit pro
grams funded through utility or federal programs by collaborating 
with community partners such as city and regional authorities or 
non-profit organizations to implement existing or create new pilot 
energy efficiency programs. For example, regional energy-efficiency 
networks can help to promote energy assistance programs to make 
them more accessible by leveraging each other’s efforts. These net
works could include Southeast Energy Efficiency Alliance (SEEA), 
Southwest Energy Efficiency Project (SWEEP), and South Alliance for 
Clean Energy (SACE) with partnerships with the U.S. DOE, as well as 
utilities, third-party program administrators, public officials, advo
cacy groups, businesses, and foundations can reach to LIHs with a 
high EB [49]. In addition, the regional energy networks can provide 
technical assistance to the states in the U.S. southeast and munici
palities to support regional efficiency policy development and 
implementation.  

2. Community co-designed communication and outreach strategies. Our 
findings also suggest socioeconomic factors, or race/ethnicity at the 
county level, have impacted EB; therefore, this study indicates 
including trustworthy representatives from the local or ethnic com
munities to combat EB effectively. Importantly, it is desired that 
these representatives understand local and non-English speaking 
cultures and their associated EB-related issues and thus integrate into 
the co-designing utilities’ energy efficiency or bill assistant program 
outreach. Additionally, the design of the program application pro
cess and benefits of bill assistance and weatherization programs 
require utilities to include outreach specialists from the community 
to perform face-to-face outreach. Therefore, a localized best practice 
of designing, implementing, and delivering effective energy effi
ciency programs and weatherization by having community members 
is much needed.  

3. Set energy burden goals, leverage programs, and evaluate progress. Our 
findings suggest a wide range of EB in the U.S. depending on the level 
of analysis at the city, county, regional, or state levels. Therefore, an 
average EB at a country or state level might not present the risk of 
higher EB for s community. Local community utilities and state 
policymakers should set a realistic goal of improving energy 
affordability and reducing EBs as their priority in addressing com
munity energy insecurity issues (e.g., no >6 %) [50]. For example, 
the City of New York has one of the country’s highest electricity rates 
[51]. To reduce its EB, the City of New York launched the State’s first 
energy affordability policy in 2016 with a target of limiting energy 
costs for LIHs to no >6 % of their pre-tax household income [52]. The 
city has identified a multi-pronged intervention and initiatives to 
alleviate the EB to achieve this goal, such as focusing on the policies 
to impact energy rates and energy consumed, promoting energy ef
ficiency investments, increasing access to low-cost renewable en
ergy, developing policy options to incentivize community solar or 
low-income solar development, and taking bold steps toward 
improving the sustainability and resiliency of its energy supply [51]. 
The city also creates concrete strategies to track progress toward this 
goal. While leveraging existing programs to improve energy efficacy 
and affordability for LIHs is essential, periodically evaluating the 
program design and effectiveness of participation is critical, espe
cially for the harder-to-reach, low-income communities of color.  

4. Develop an interactive tool for measuring energy, housing, and health 
intersections. The majority of EB studies in the U.S. focuses on the 
relationship between socioeconomic and race/ethnicity factors and 
EB; however, this study has demonstrated the intersectional drivers 
of community vulnerabilities, including six composite indices of so
cioeconomics, race/ethnicity, housing condition, and types, 
disability, transportation accessibility, epidemiological, health care 
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system, and COVID-19 factors. Our findings contribute to energy 
justice literature by building a comprehensive quantitative frame
work from several merged national representative datasets, similar 
to the U.S. Low-income Energy Affordability Data (LEAD) tool. As a 
result, policymakers can develop a similar measurable tool for 
analyzing counties and state and regional EBs by tailoring their own 
need or expanding the interconnected factors such as sociodemo
graphics, ethnicity, language, transportation, housing conditions, 
and types, electricity rate, health care system, individual health 
conditions, heating or cooling degree days, and energy efficiency 
programs, low-income assistance policies, and so on. Our data could 
be built into an interactive mapping tool to help the country, region, 
states, and other stakeholders create better energy strategies by 
improving their understanding of underserved communities’ hous
ing, energy characteristics, and health system. For example, our re
sults demonstrate unique relationships between EBs, poor housing 
conditions, transportation accessibility, and people with disabilities. 
Policymakers can develop specific EB assessments and energy effi
ciency programs for people with disabilities. Further, the local en
ergy policy can incentivize landlords to improve the energy-efficient 
housing environment for people with disabilities or low-income 
renters. Energy-efficient tools or policies also need to target the 
geographic patterns which cause energy poverty rather than offering 
financial aid to mitigate the overall effects of energy poverty [29]. 

This study’s findings suggest that the influence of the determinants 
of EB could be spatially homogeneous (i.e., national-level de
terminants) or heterogeneous (i.e., neighborhood-specific de
terminants). Therebefore, energy policies needed to accommodate 
this spatial or location effect by diversifying their target residents, 
especially those in underserved communities. For example, utility 
energy efficiency programs and the LIHEAP should consider the 
policy for no shut-off orders for people with electricity-dependent 
medical devices or health conditions that are affected by heating 
and cooling. The WAP should also consider these vulnerable groups 
as their priority in providing the program assistance. Finally, our 
findings connecting with health systems and indicators recommend 
that weatherization program evaluators and outreach personnel 
could include the benefits of environmental health, housing quality, 
and energy security in cost-benefit analyzes or outreach materials. 
The impacts of energy on health are well-documented [53]. There
fore, policymakers should develop health-related policies to improve 
EB and a healthy built environment for LIHs. 

6. Conclusion 

This study contributes to energy justice literature and provides a 

multi-scale and multi-dimensional study of EB. The analysis of the 
CCVI’s themes here (e.g., socioeconomic, minority status and language, 
housing condition, transportation, epidemiological, health care system, 
and COVID mortality and cases) shows that different communities 
across the country are vulnerable to energy burden for various reasons. 
In supporting vulnerable populations, it is critical to understand what 
explicitly drives their vulnerability to energy burdens. The connection 
between vulnerability and energy poverty is complex, and energy 
poverty does not have the same pattern in every community and exact 
causes. This study can help researchers and policymakers understand 
how and where energy poverty impacts vulnerable populations to pri
oritize and monitor energy assistance resources. Where available, data 
on the costs of electricity, transportation, health care, and rent/house 
value can be combined with the CCVI to quickly identify the inter
connected issues of energy, housing, and health during normal and 
extreme events. 
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Appendix I. Model coefficients and significance summary in all the regions except the Contiguous U.S. 

Here we present the model coefficient and significance summary of all the studied regions except the Contiguous U.S. in Tables I-1–I-16.  

Table I-1 
Model coefficient and significance summary of the U.S.   

OLS Spatial lag GWR MGWR 

Variables Coeff. Sig. Coeff. Sig. Mean Min. Max. %Sig. Mean Min. Max. %Sig. 

(Intercept) 0.000  – – – – – – – – – – 
SE 0.350 *** – – – – – – – – – – 
HD 0.175 *** – – – – – – – – – – 
ML − 0.253 *** – – – – – – – – – – 
HT 0.120 *** – – – – – – – – – – 
EF 0.029 * – – – – – – – – – – 
HS 0.036 * – – – – – – – – – – 
COVID case rate − 0.011  – – – – – – – – – – 
COVID mortality rate 0.108 *** – – – – – – – – – – 
w_EB – – – – – – – − – – – −
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* (P < 0.05), ** (P < 0.01), *** (P < 0.001). 
Table I-2 
Model coefficient and significance summary of the New England region.   

OLS Spatial lag GWR MGWR 

Variables Coeff. Sig. Coeff. Sig. Mean Min. Max. %Sig. Mean Min. Max. %Sig. 

(Intercept) 0.000  0.020  − 0.111 − 0.253 − 0.015 45 − 0.279 − 0.344 − 0.212 100 
SE 0.219  0.203  0.261 0.171 0.417 34 0.197 − 0.036 0.339 1 
HD 0.244  0.204  0.237 0.130 0.378 25 0.226 0.119 0.291 36 
ML − 0.329  − 0.310  − 0.454 − 0.778 − 0.014 60 − 0.490 − 0.739 − 0.210 69 
HT − 0.095  − 0.120  − 0.078 − 0.243 0.094 25 − 0.018 − 0.220 0.097 0 
EF 0.055  0.060  0.044 − 0.022 0.114 0 0.016 − 0.019 0.083 0 
HS 0.199 * 0.193 * 0.172 0.046 0.355 52 0.169 0.144 0.228 100 
COVID case rate 0.285  0.310 * 0.151 − 0.007 0.340 1 0.239 0.192 0.280 49 
COVID mortality rate − 0.620 *** − 0.548 *** − 0.431 − 0.856 0.063 60 − 0.528 − 0.627 − 0.354 100 
w_EB – – 0.054  – – – – – – – – 

* (P < 0.05), ** (P < 0.01), *** (P < 0.001).  

Table I-3 
Model coefficient and significance summary of the Middle Atlantic region.   

OLS Spatial lag GWR MGWR 

Variables Coeff. Sig. Coeff. Sig. Mean Min. Max. %Sig. Mean Min. Max. %Sig. 

(Intercept) 0.000  − 0.005  0.010 0.089 0.107 0 0.120 0.089 0.157 37 
SE 0.354 *** 0.299 *** 0.329 0.168 0.472 100 0.383 0.168 0.589 93 
HD 0.031  − 0.037  0.041 − 0.054 0.150 0 − 0.004 − 0.054 0.040 0 
ML − 0.529 *** − 0.234 * − 0.505 − 0.858 − 0.310 100 − 0.465 − 0.858 − 0.121 88 
HT 0.009  − 0.008  0.034 0.009 0.088 0 0.074 0.009 0.119 1 
EF − 0.073  − 0.057  − 0.070 − 0.105 − 0.040 0 − 0.062 − 0.105 − 0.020 8 
HS − 0.055  − 0.015  − 0.041 − 0.356 0.023 0 − 0.016 − 0.356 0.283 15 
COVID case rate 0.027  − 0.055  0.061 0.060 0.128 0 0.078 0.060 0.101 0 
COVID mortality rate − 0.150  0.007  − 0.153 − 0.194 − 0.131 47 − 0.110 − 0.194 − 0.021 11 
w_EB – – 0.115 *** – – – − – – – −

* (P < 0.05), ** (P < 0.01), *** (P < 0.001).  

Table I-4 
Model coefficient and significance summary of the East North Central region.   

OLS Spatial lag GWR MGWR 

Variables Coeff. Sig. Coeff. Sig. Mean Min. Max. %Sig. Mean Min. Max. %Sig. 

(Intercept) 0.000  0.003 0.919 − 0.035 − 0.467 0.403 90 0.063 − 0.467 0.880 56 
SE 0.243 *** 0.162 0.001 0.300 0.214 0.441 100 0.302 0.214 0.409 100 
HD 0.156 ** 0.144 0.001 0.166 0.070 0.297 80 0.175 0.070 0.334 82 
ML − 0.282 *** − 0.164 0.000 − 0.326 − 0.296 − 0.205 100 − 0.280 − 0.296 − 0.267 100 
HT 0.247 *** 0.153 0.000 0.174 0.084 0.307 89 0.096 0.084 0.111 100 
EF 0.027  0.027 0.361 0.042 0.013 0.121 20 0.034 0.013 0.071 23 
HS 0.027  0.056 0.069 0.057 − 0.033 0.091 2 0.090 − 0.033 0.236 40 
COVID case rate − 0.216 *** − 0.103 0.006 − 0.132 − 0.088 0.015 63 − 0.075 − 0.088 − 0.062 76 
COVID mortality rate 0.063  0.046 0.160 0.016 − 0.004 0.146 6 0.005 − 0.004 0.017 0 
w_EB – – 0.083 0.000 – – – − – – – −

* (P < 0.05), ** (P < 0.01), *** (P < 0.001).  

Table I-5 
Model coefficient and significance summary of the West North Central region.   

OLS Spatial lag GWR MGWR 

Variables Coeff. Sig. Coeff. Sig. Mean Min. Max. %Sig. Mean Min. Max. %Sig. 

(Intercept) 0.000  0.003  0.053 − 0.990 0.751 58 0.019 − 0.990 1.186 54 
SE 0.339 *** 0.191 *** 0.402 0.388 0.736 94 0.434 0.388 0.483 100 
HD 0.170 *** 0.127 *** 0.191 0.055 0.467 70 0.136 0.055 0.210 92 
ML − 0.293 *** − 0.154 *** − 0.338 − 0.346 − 0.149 100 − 0.292 − 0.346 − 0.248 100 
HT 0.045  − 0.008  0.074 − 0.044 0.200 25 0.015 − 0.044 0.063 0 
EF 0.046  0.016  0.059 0.031 0.146 18 0.043 0.031 0.054 0 
HS − 0.097 * 0.009  0.039 0.094 0.222 14 0.111 0.094 0.134 100 
COVID case rate − 0.096 * − 0.073 * − 0.053 − 0.460 0.166 30 − 0.068 − 0.460 0.217 28 
COVID mortality rate 0.108 * 0.112 ** 0.037 0.038 0.212 17 0.052 0.038 0.081 27 
w_EB – – 0.105 *** – – – − – – – −

* (P < 0.05), ** (P < 0.01), *** (P < 0.001).  
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Table I-6 
Model coefficient and significance summary of the South Atlantic region.   

OLS Spatial lag GWR MGWR 

Variables Coeff. Sig. Coeff. Sig. Mean Min. Max. %Sig. Mean Min. Max. %Sig. 

(Intercept) 0.000  − 0.009  0.093 − 0.474 1.294 53 0.028 − 0.694 0.834 58 
SE 0.398 *** 0.336 *** 0.414 0.032 0.875 85 0.379 0.361 0.403 100 
HD 0.142 *** 0.121 *** 0.145 − 0.199 0.628 36 0.144 − 0.336 0.734 47 
ML − 0.127 *** − 0.100 *** − 0.262 − 0.786 0.055 66 − 0.220 − 0.227 − 0.210 100 
HT 0.134 *** 0.104 ** 0.129 − 0.298 0.494 43 0.089 − 0.066 0.283 34 
EF 0.088 ** 0.081 ** 0.097 − 0.100 0.359 35 0.084 0.076 0.092 100 
HS 0.161 *** 0.132 *** 0.092 − 0.322 0.341 42 0.078 − 0.349 0.487 37 
COVID case rate − 0.060  − 0.062 * − 0.089 − 0.478 0.361 26 − 0.071 − 0.104 − 0.032 57 
COVID mortality rate 0.163 *** 0.129 *** 0.109 − 0.413 0.444 26 0.093 0.083 0.097 100 
w_EB – – 0.049 *** – – – − – – – −

* (P < 0.05), ** (P < 0.01), *** (P < 0.001).  

Table I-7 
Model coefficient and significance summary of the East South-Central region.   

OLS Spatial lag GWR MGWR 

Variables Coeff. Sig. Coeff. Sig. Mean Min. Max. %Sig. Mean Min. Max. %Sig. 

(Intercept) 0.000  − 0.002  − 0.121 − 0.744 0.407 90 − 0.080 − 0.553 0.391 88 
SE 0.607 *** 0.450 *** 0.511 0.511 0.694 100 0.505 0.192 0.846 100 
HD 0.040  0.041  0.046 0.046 0.186 15 0.049 − 0.045 0.147 12 
ML 0.162 *** 0.066 * − 0.065 − 0.065 0.162 32 − 0.039 − 0.265 0.212 39 
HT 0.010  − 0.001  0.053 0.053 0.239 20 0.014 − 0.006 0.038 0 
EF − 0.005  0.012  0.040 0.040 0.173 13 0.035 − 0.021 0.135 20 
HS 0.097 ** 0.105 *** 0.044 0.044 0.214 31 0.054 0.007 0.100 48 
COVID case rate − 0.161 *** − 0.093 * − 0.071 − 0.071 0.084 44 − 0.056 − 0.202 0.098 37 
COVID mortality rate 0.245 *** 0.152 *** 0.131 0.131 0.324 52 0.151 − 0.144 0.374 54 
w_EB – – 0.087 *** – – – − – – – −

* (P < 0.05), ** (P < 0.01), *** (P < 0.001).  

Table I-8 
Model coefficient and significance summary of the West South-Central region.   

OLS Spatial lag GWR MGWR 

Variables Coeff. Sig. Coeff. Sig. Mean Min. Max. %Sig. Mean Min. Max. %Sig. 

(Intercept) 0.000  0.001  0.079 − 0.293 0.382 32 0.066 − 0.543 0.579 41 
SE 0.322 *** 0.238 *** 0.426 0.104 0.961 96 0.354 0.187 0.624 100 
HD 0.201 *** 0.176 *** 0.137 − 0.093 0.300 57 0.130 0.118 0.146 100 
ML − 0.239 *** − 0.175 *** − 0.318 − 0.647 − 0.039 78 − 0.331 − 0.958 0.255 66 
HT 0.172 *** 0.140 *** 0.175 − 0.155 0.343 63 0.184 − 0.122 0.317 85 
EF 0.067  0.057  0.030 − 0.140 0.139 2 0.022 0.015 0.031 0 
HS 0.042  0.060  0.063 − 0.128 0.215 14 0.082 − 0.143 0.193 39 
COVID case rate 0.009  0.004  0.033 − 0.149 0.187 10 0.015 − 0.014 0.038 0 
COVID mortality rate 0.042  0.035  0.114 − 0.134 0.396 33 0.122 − 0.233 0.487 30 
w_EB – – 0.063 *** – – – − – – – −

* (P < 0.05), ** (P < 0.01), *** (P < 0.001).  

Table I-9 
Model coefficient and significance summary of Mountain region.   

OLS Spatial lag GWR MGWR 

Variables Coeff. Sig. Coeff. Sig. Mean Min. Max. %Sig. Mean Min. Max. %Sig. 

(Intercept) 0.000  0.017 0.692 0.011 − 0.649 0.367 50 0.011 − 0.807 0.637 55 
SE 0.325 *** 0.178 0.017 0.189 − 0.179 0.558 73 0.189 0.178 0.202 100 
HD 0.076  0.050 0.369 0.047 − 0.274 0.297 46 0.047 0.006 0.087 0 
ML − 0.445 *** − 0.308 0.000 − 0.287 − 0.843 0.060 81 − 0.287 − 0.329 − 0.256 100 
HT 0.111 * 0.052 0.301 0.144 − 0.233 0.518 50 0.144 − 0.419 0.848 54 
EF 0.035  0.039 0.357 0.051 − 0.100 0.249 25 0.051 − 0.017 0.146 38 
HS 0.097  0.150 0.002 0.254 − 0.166 0.585 44 0.254 0.008 0.519 74 
COVID case rate − 0.248 *** − 0.181 0.000 − 0.303 − 0.805 − 0.122 98 − 0.303 − 0.391 − 0.241 100 
COVID mortality rate 0.227 *** 0.118 0.030 0.037 − 0.177 0.641 42 0.037 − 0.175 0.403 20 
w_EB – – 0.724 *** – – – − – – – −

* (P < 0.05), ** (P < 0.01), *** (P < 0.001).  
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Table I-10 
Model coefficient and significance summary of the Pacific region.   

OLS Spatial lag GWR MGWR 

Variables Coeff. Sig. Coeff. Sig. Mean Min. Max. %Sig. Mean Min. Max. %Sig. 

(Intercept) 0.000  – – – – – – – – – – 
SE 0.358 *** – – – – – – – – – – 
HD 0.043  – – – – – – – – – – 
ML − 0.322 *** – – – – – – – – – – 
HT 0.236 *** – – – – – – – – – – 
EF − 0.105  – – – – – – – – – – 
HS − 0.019  – – – – – – – – – – 
COVID case rate 0.518 *** – – – – – – – – – – 
COVID mortality rate − 0.379 * – – – – – – – – – – 
w_EB – – – – – – – − – – – −

* (P < 0.05), ** (P < 0.01), *** (P < 0.001).  

Table I-11 
Model coefficient and significance summary of the Contiguous Pacific region.   

OLS Spatial lag GWR MGWR 

Variables Coeff. Sig. Coeff. Sig. Mean Min. Max. %Sig. Mean Min. Max. %Sig. 

(Intercept) 0.000  − 0.018  − 0.015 − 0.457 0.532 93 0.061 − 0.676 0.873 92 
SE 0.415 *** 0.291 ** 0.341 0.099 0.551 56 0.435 0.416 0.455 100 
HD 0.124  0.054  0.230 0.012 0.439 44 0.140 0.075 0.214 40 
ML − 0.422 *** − 0.262 ** − 0.477 − 0.615 − 0.260 100 − 0.512 − 0.696 − 0.355 100 
HT 0.054  0.045  0.100 0.034 0.154 0 0.140 0.132 0.151 100 
EF − 0.111  − 0.067  − 0.010 − 0.125 0.043 0 0.036 0.018 0.050 0 
HS 0.259 *** 0.206 ** 0.192 0.103 0.340 85 0.090 − 0.086 0.358 23 
COVID case rate − 0.142  − 0.206 * − 0.224 − 0.627 0.099 45 − 0.306 − 0.725 − 0.071 50 
COVID mortality rate 0.033  0.123  0.144 − 0.143 0.423 44 0.154 0.037 0.252 59 
w_EB – – 0.660 *** – – – − – – – −

* (P < 0.05), ** (P < 0.01), *** (P < 0.001).  

Table I-12 
Model coefficient and significance summary of Mississippi.   

OLS Categorical Spatial lag GWR MGWR 

Variables Coeff. Sig. Coeff. Sig. Coeff. Sig. Mean Min. Max. %Sig. Mean Min. Max. %Sig. 

(Intercept) 0.000  – – 0.012  0.06 0.026 0.138 2 0.121 0.054 0.173 41 
SE 0.645 *** – – 0.604 *** 0.64 0.572 0.726 100 0.697 0.656 0.739 100 
HD 0.081  – – 0.054  0.109 0.005 0.223 29 0.075 0.029 0.128 0 
ML 0.120  – – 0.029  0.048 − 0.13 0.174 0 − 0.012 − 0.245 0.329 17 
HT − 0.146  – – − 0.111  − 0.124 − 0.221 − 0.051 33 − 0.134 − 0.203 − 0.066 44 
EF − 0.042  – – − 0.006  − 0.047 − 0.156 0.05 4 − 0.083 − 0.277 0.094 30 
HS 0.176 * – – 0.209 ** 0.186 0.115 0.237 94 0.218 0.113 0.348 91 
COVID case rate − 0.092  – – − 0.074  − 0.073 − 0.193 0.025 18 − 0.05 − 0.145 0.021 0 
COVID mortality rate 0.232 * – – 0.108  0.176 0.053 0.293 51 0.155 0.023 0.285 51 
w_EB – – – – 0.622 *** – – – − – – – −

* (P < 0.05), ** (P < 0.01), *** (P < 0.001).  

Table I-13 
Model coefficient and significance summary of Maine.   

OLS Categorical Spatial lag GWR MGWR 

Variables Coeff. Sig. Coeff. Sig. Coeff. Sig. Mean Min. Max. %Sig. Mean Min. Max. %Sig. 

(Intercept) 0.000  – – − 0.033  – – – – – – – – 
SE 0.308  – – 0.425 *** – – – – – – – – 
HD 0.117  – – 0.010  – – – – – – – – 
ML − 0.450 * – – − 0.445 *** – – – – – – – – 
HT 0.211  – – 0.310 *** – – – – – – – – 
EF 0.194  – – 0.212 *** – – – – – – – – 
HS 0.298  – – 0.143  – – – – – – – – 
COVID case rate − 0.054  – – − 0.280  – – – – – – – – 
COVID mortality rate − 0.098  – – − 0.053  – – – – – – – – 
w_EB – – – – − 0.604 *** – – – − – – – −

* (P < 0.05), ** (P < 0.01), *** (P < 0.001).  
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Table I-14 
Model coefficient and significance summary of Alabama.   

OLS Categorical Spatial lag GWR MGWR 

Variables Coeff. Sig. Coeff. Sig. Coeff. Sig. Mean Min. Max. %Sig. Mean Min. Max. %Sig. 

(Intercept) 0.000  – – 0.001  0.049 − 0.021 0.14 0 0.049 − 0.021 0.14 0 
SE 0.739 *** – – 0.749 *** 0.695 0.62 0.748 100 0.695 0.62 0.748 100 
HD − 0.166  – – − 0.239 * − 0.127 − 0.218 − 0.05 15 − 0.127 − 0.218 − 0.05 24 
ML − 0.030  – – − 0.104  0.018 − 0.072 0.133 0 0.018 − 0.072 0.133 22 
HT 0.144  – – 0.033  0.145 0.063 0.209 9 0.145 0.063 0.209 78 
EF 0.042  – – 0.058  0.048 − 0.004 0.089 0 0.048 − 0.004 0.089 6 
HS − 0.012  – – − 0.006  − 0.018 − 0.088 0.083 0 − 0.018 − 0.088 0.083 3 
COVID case rate − 0.012  – – 0.027  − 0.014 − 0.093 0.119 0 − 0.014 − 0.093 0.119 0 
COVID mortality rate 0.195 * – – 0.144 * 0.138 0.033 0.216 43 0.138 0.033 0.216 27 
w_EB – – – – 0.536 ** – – – − – – – −

* (P < 0.05), ** (P < 0.01), *** (P < 0.001).  

Table I-15 
Model coefficient and significance summary of Montana.   

OLS Categorical Spatial lag GWR MGWR 

Variables Coeff. Sig. Coeff. Sig. Coeff. Sig. Mean Min. Max. %Sig. Mean Min. Max. %Sig. 

(Intercept) 0.000  – – 0.010  – – – – – – – – 
SE 0.145  – – 0.149  – – – – – – – – 
HD − 0.102  – – − 0.093  – – – – – – – – 
ML − 0.083  – – − 0.075  – – – – – – – – 
HT − 0.257  – – − 0.256  – – – – – – – – 
EF − 0.008  – – 0.000  – – – – – – – – 
HS 0.173  – – 0.175  – – – – – – – – 
COVID case rate − 0.283  – – − 0.293  – – – – – – – – 
COVID mortality rate 0.445 * – – 0.418 * – – – – – – – – 
w_EB – – – – 0.152  – – – − – – – −

* (P < 0.05), ** (P < 0.01), *** (P < 0.001).  

Table I-16 
Model coefficient and significance summary of Georgia.   

OLS Categorical Spatial lag GWR MGWR 

Variables Coeff. Sig. Coeff. Sig. Coeff. Sig. Mean Min. Max. %Sig. Mean Min. Max. %Sig. 

(Intercept) 0.000  – – 0.001  0.049 − 0.021 0.14 0 0.049 − 0.021 0.14 0 
SE 0.739 *** – – 0.749 *** 0.695 0.62 0.748 100 0.695 0.62 0.748 100 
HD − 0.166  – – − 0.239  − 0.127 − 0.218 − 0.05 15 − 0.127 − 0.218 − 0.05 24 
ML − 0.030  – – − 0.104  0.018 − 0.072 0.133 0 0.018 − 0.072 0.133 22 
HT 0.144  – – 0.033  0.145 0.063 0.209 9 0.145 0.063 0.209 78 
EF 0.042  – – 0.058  0.048 − 0.004 0.089 0 0.048 − 0.004 0.089 6 
HS − 0.012 * – – − 0.006 ** − 0.018 − 0.088 0.083 0 − 0.018 − 0.088 0.083 3 
COVID case rate − 0.012  – – 0.027  − 0.014 − 0.093 0.119 0 − 0.014 − 0.093 0.119 0 
COVID mortality rate 0.195 * – – 0.144  0.138 0.033 0.216 43 0.138 0.033 0.216 27 
w_EB – – – – 0.536 *** – – – − – – – −

* (P < 0.05), ** (P < 0.01), *** (P < 0.001). 

Appendix II. Local regression coefficients of MGWR for all the independent variables except SE 

Here we present the local coefficient maps of MGWR for Intercept, HD, ML, HT, EF, HS, Covid case rate, and Covid mortality rate in Figs. II-1–II-8.
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Fig. II-1. Local regression coefficients of MGWR for Intercept at: (a) national level; and (b) census region level. 
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Fig. II-2. Regression coefficients of MGWR for HD at: (a) national level; and (b) census region level.  
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Fig. II-3. Regression coefficients of MGWR for ML at: (a) national level; and (b) census region level.  
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Fig. II-4. Regression coefficients of MGWR for HT at: (a) national level; and (b) census region level.  
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Fig. II-5. Regression coefficients of MGWR for EF at: (a) national level; and (b) census region level.   
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Fig. II-6. Regression coefficients of MGWR for EF at: (a) national level; and (b) census region level.  
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Fig. II-7. Regression coefficients of MGWR for COVID case rate at: (a) national level; and (b) census region level.  
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Fig. II-8. Regression coefficients of MGWR for COVID mortality rate at: (a) national level; and (b) census region level.  
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