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Abstract — In the nuclear industry, high system reliability requirements are essential since in-service failure can 
result in undesirable consequences in terms of costs or safety. However, the current approach to maintaining 
systems and components is costly and known to involve overly conservative periodic maintenance activities. It is, 
therefore, appropriate to develop monitoring, detection, and predictive tools to enable operators to create optimal 
maintenance strategies. These strategies can vary from the substitution of an item to its repair, intending to avoid 
unexpected consequences. The repair can restore the item’s functionality to an as-good-as-new condition (perfect 
repair) or sometimes can keep some accumulated degradation and change the item’s degradation rate (imperfect or 
partial repair). Current techniques and models that can perform prognostics with extraordinary accuracy are often 
designed on the assumption that following maintenance, the item is restored to an as-good-as-new condition. When 
these models are used to predict items that follow imperfect repairs, the predictions are likely to be inaccurate. 
Therefore, the present work focuses on the condition-based prognostics of items, considering and handling the 
criticalities that arise after the items undergo different kinds of repairs. The proposed solution involves a data- 
driven framework that employs Left-Right Gaussian Hidden Markov Models (LR-GHMMs). These models can 
intrinsically manage accumulated degradation. The idea is to train different LR-GHMMs, each specific to 
a degradation path, and then combine them to cover possible intermediate paths. The effectiveness of the approach 
is tested in two case studies. In the first one, we consider simple artificial sequences that are useful to explain the 
method’s capabilities. In the second case study, we consider semi-simulated nuclear data describing the degrada
tion transients of a condenser that undergoes fouling. The framework is trained with data collected from items that 
start without accumulated degradation. The test data represent either new items or items that undergo imperfect 
repairs. The results demonstrate an attractive elasticity of the framework in adapting to nonstandard degradation 
behaviors. In addition, the applications provide interpretable and highly accurate outputs.

Keywords — Condition-based prognostics, imperfect maintenance, Hidden Markov Models, nuclear 
power plants, condenser fouling.  

Note — Some figures may be in color only in the electronic version. 

I. INTRODUCTION

Prognostics and health management (PHM) is 
a process to assess, predict, and maintain the health con
dition of components, systems, and structures using mon
itoring data. Accurately predicting possible failures 
within an industrial system prevents corrective 

*E-mail: mzanotel@vols.utk.edu
This is an Open Access article distributed under the terms of the 
Creative Commons Attribution-NonCommercial-NoDerivatives 
License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which 
permits non-commercial re-use, distribution, and reproduction in 
any medium, provided the original work is properly cited, and is not 
altered, transformed, or built upon in any way. The terms on which 
this article has been published allow the posting of the Accepted 
Manuscript in a repository by the author(s) or with their consent.

NUCLEAR SCIENCE AND ENGINEERING
© 2024 The Author(s). Published with license by Taylor & Francis Group, LLC.
DOI: https://doi.org/10.1080/00295639.2024.2303165

1 

http://orcid.org/0000-0002-9484-3580
https://crossmark.crossref.org/dialog/?doi=10.1080/00295639.2024.2303165&domain=pdf&date_stamp=2024-02-07


maintenance, reduces system downtime, and helps transi
tion the maintenance strategy from preventive (i.e., 
scheduled) maintenance to predictive (condition-based) 
maintenance.[1] This can directly improve operational 
efficiency and reduce life cycle costs. In view of the 
high impact and costs usually associated with nuclear 
power plant (NPP) failures, methods that can identify 
and predict such events have long been investigated.[2] 

Given the capability of these methods in supporting and 
sustaining improvements in the operation and mainte
nance of NPPs, an appropriate pipeline design that 
embeds optimal PHM strategies is critical to ensuring 
the competitiveness of the nuclear industry in the global 
energy market.

The key modules of PHM are detection, diagnostics, 
and prognostics. In the first module, data are collected 
from the system to detect abnormal deviations of signals 
from normal behavior. In the diagnostics phase, faults are 
isolated to one or more specific components of the sys
tem, and the causes of the faults are subsequently identi
fied. Last, prognostics can predict the system’s remaining 
useful life (RUL). All the modules provide helpful infor
mation for operation and maintenance.[3]

In this work, the attention is focused on the prognos
tic phase that aims at predicting the RUL of items and 
systems. Nowadays, we have at our disposal many 
sophisticated techniques and models that can perform 
prognostics with extraordinary accuracy.[4] However, 
most of them are designed on the assumption that follow
ing maintenance, the item’s condition is restored to an as- 
good-as-new condition. This is true when a maintenance 
strategy involves the replacement (also known as perfect 
maintenance operation) of the failed item. Nevertheless, 
given the high costs associated with replacements, it is 
often convenient to repair an item instead, as a balance of 
economic performance and system reliability. A repair 
usually results in imperfect maintenance and implies 
that the system’s condition after maintenance is some
where between bad-as-old and good-as-new.[5] More spe
cifically, a repair can remove only part of the degradation 
that accumulated before and potentially change the degra
dation evolution of the item. In general, we will use the 
term “degradation paths” to indicate distinct behaviors. 
Instead, when a degradation path depends on a constant 
degradation rate over time (e.g., it can be modeled 
through a linear or an exponential function), we will 
identify different behaviors using the term “degradation 
rates.”

To clarify, Fig. 1 highlights the differences between 
perfect and imperfect maintenance operations, showing 
possible different degradation restorations and rates after 

an imperfect repair. Although repairs benefit plant eco
nomics, they also create difficulties when predicting the 
RUL. It has been proven that general models are often 
unsuitable for analyzing data from items that begin oper
ating with some accumulated degradation just after 
a maintenance operation, resulting in inaccurate 
predictions.[3,6]

A previous study addressed the aforementioned criti
calities using a gamma process to model the degradation 
and combined it with a Markov renewal process to simu
late imperfect repairs and inform the predictions.[7] The 
authors of Ref. [8] investigated the impacts of imperfect 
maintenance action to predict items’ deterioration cor
rectly and to develop an adaptive maintenance policy. In 
Ref. [9], the Wiener process with jumps is employed to 
model the degradation path of a deteriorating system, 
where the jump parts are used to characterize the influ
ence of maintenance activities on the system degradation. 
Another study addressed the aforementioned criticalities 
by developing a maintenance-dependent framework for 
detecting anomalies, decoupling faults, doing prognosis 
analysis on each fault, and reinitializing the critical model 

Fig. 1. Perfect and imperfect maintenance. The different 
kinds of dashed lines indicate the functional behavior of 
the degradation after the execution of different kinds of 
maintenance. 
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parameters depending on specified repair techniques.[10] 

In that work, the focus was on the prognostic phase for 
which the authors implemented a so-called Auxiliary 
Particle Filter Prognostic Model (APFPM). An alterna
tive approach to handle the criticalities of the imperfect 
repairs can be the forage of a model or the design of 
a framework that (1) is trained only on degradation 
sequences of items that start with no accumulated degra
dation, (2) accurately predicts the RUL of items that 
follow a perfect maintenance operation, and (3) accu
rately predicts the RUL of items that start with accumu
lated degradation and possibly follow new degradation 
paths when it is informed about the kind of imperfect 
repair. The present study focuses on this last solution, 
developing a data-driven framework that employs Left- 
Right Gaussian Hidden Markov Models (LR-GHMMs),[11] 

which can intrinsically manage accumulated degradation. 
It is worth mentioning that the approach is designed to be 
trained on univariate prognostic parameters.[12] The overall 
idea is to train different models, each specific to 
a degradation path, and then combine them to have 
a coverage of possible intermediate paths. The combina
tion is managed by proposing an aggregation method that 
finds an interpretable average of the single-model RUL 
estimates.

The LR-GHMM framework is demonstrated with two 
case studies. First, artificial sequences are generated to 
simulate the behavior of prognostic parameter evolutions 
of items that start without accumulated degradation. Each 
sequence has a noisy exponential behavior with a different 
degradation rate, representing distinct degradation paths. 
Then, the framework is tested on other artificial sequences 
simulating intermediate degradation paths and random 
initial accumulated degradation. The second case study 
considers semi-simulated NPP circulating water system 
(CWS) data. Condenser tube fouling is introduced into 
the CWS to simulate both evolutions of initially brand- 
new items and items that start with accumulated degrada
tion and an unknown degradation path. Once the faults are 
detected, prognostic parameters are generated to predict 
failures. Results show that the framework provides 
a reliable way for NPP prognostics when perfect and 
imperfect repairs are involved.

II. METHODOLOGY

This section focuses on the development of the pro
posed data-driven framework. The theory behind LR- 
GHMMs is first explained, mentioning the algorithm to 
train a model on an observation sequence and focusing on 

the procedure to predict the RUL of a test sequence using 
the model. Then, the aggregation approach to average the 
predictions is contextualized and explained. A visual 
representation of the framework is depicted in Fig. 2.

II.A. The Left-Right Gaussian Hidden Markov Model

This section delineates the structure of a general 
Hidden Markov Model (HMM)[11] and mentions the gen
eral training procedure given an observation sequence. 
Then, the specifics and constraints to make the model 
Gaussian and Left-Right are briefly explained. The HMM 
is an extension of the Markov chain[13] in which the states 
of the process are not directly measurable and can be 
inferred only through the analysis of an observed signal. 
The relationship between the signal values and the hidden 
states can be modeled through conditioned probabilistic 
functions. In other words, the observed signal is a random 
variable whose probability density function (pdf) depends 
on the current state of the underlying Markov chain.

A standard HMM consists of a set of elements that 
are defined as follows:

1. S ¼ S1; :::; SN = a set of hidden states.

2. A ¼ a11; :::; aij; :::; aNN = a transition probability 
(in our case, defined per unit time) matrix from any state 
i to any state j.

3. O ¼ o1; :::; ot; :::; oT = a sequence of T observa
tions (e.g., a set of prognostic parameter values equally 
spaced in time).

4. B ¼ fbiðotÞg = a set of N observation likeli
hoods (or emission probability densities) that can be 
discrete or continuous.

5. π ¼ π1; π2; :::; πN = an initial probability distribu
tion of the hidden states.

The HMMs inherit the main property of the Markov 
chains, known as the Markov assumption. If the hidden 
state at time t is indicated as qt, the assumption states that 
Pðqtjq1; :::; qt� 1Þ ¼ Pðqtjqt� 1Þ; i.e., the probability of 
a particular state depends only on the state at the previous 
time step. Another assumption specific to HMMs is the 
output independence: Pðotjq1; :::; qt; o1; :::; otÞ ¼ PðotjqtÞ; 
i.e., the probability of an output observation ot depends 
only on the state qt that produced the observation and not 
on any other states or any other observation. Figure 3 
depicts the structure of a hidden Markov process, show
ing the relationships between the hidden states and the 
observation variable at any time step and the transition 
probabilities between the states at a time instant and the 
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next one. A training process for an HMM aims to set all 
the free parameters related to the elements shown in the 
figure to make the model as consistent as possible with 
the sequence of observations that we want to describe.

The training step is performed employing the Baum- 
Welch (B-W) algorithm,[11] which trains a single model λ 
on an observation sequence OTrain. The algorithm is 
a special case of the Expectation-Maximization 
algorithm[14] and requires the initialization of A, B, and 
π. Statistically combining model parameters and the 
observation sequence, the procedure obtains an initial 
estimate of A and B; then, these estimates are used to 
compute better estimates, and so on, iteratively. Once the 
iterations terminate, the B-W algorithm provides an esti
mate of the A and B that maximize the likelihood PðOjλÞ. 
A limitation of this approach is that it finds a parameter 

set for λ that usually corresponds to a local likelihood 
maximum. It has been observed that the algorithm is 
sensitive to all the parameters’ initialization[15]; thus, 
the global maximum is reached only if the initialization 
is adequately performed. The initialization technique used 
for this work will be discussed later.

It was mentioned that the selected model for the 
present application is a LR-GHMM. The choice of a Left- 
Right model is related to the nature of degradation pro
cesses where the components cannot recover from a bad 
health condition to a better one over time (unless a repair 
is performed). When describing the degradation states of 
an item through the hidden states of a Markov process, 
the mentioned physical behavior is translated setting aij ¼

0 for j < i. In other words, the index of states numerically 
proceeds from left to right. Furthermore, it was decided to 
impose additional constraints on the state transition coef
ficients to make sure that significant changes in state 
indices do not occur: aij ¼ 0 for j > iþ 1. That is, from 
one time step to the next, the system can remain at the 
same degradation state or progress one state.

Moreover, since the analyzed industrial prognostic 
signal belongs to a continuous domain, the observation 
likelihoods are chosen to be continuous and Gaussian. 
Although there are representations of likelihoods in the 
literature that are more comprehensive and accurate,[11] 

simple Gaussian pdf’s are good enough for industrial 
prognostic applications involving a univariate parameter. 
The new reestimation formulas for the coefficients of the 
densities can be found in Ref. [14] while the reestimation 
formula for aij remains unchanged.

Fig. 2. LR-GHMM framework for prognostics. PP1;PP2; ::: are prognostic parameters extracted combining signals from time 
series of items used to train the models. PPTest is the prognostic parameter extracted from a general test item. 

Fig. 3. General structure of a hidden Markov process. 
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Figure 4 shows a simplified example of a prognostic 
parameter sequence. On the right side, a visual representation 
of a trained HMM is presented to show how we expect it to 
statistically model the sequence. The consecutive states are 
associated with observation likelihoods with increasing 
expected value (increasing degradation) as a direct conse
quence of the parameter’s monotonicity and the HMM’s left- 
right constraint. Each colored region indicates a subdomain of 
parameter values where the observational probability of being 
in a specific state is high. Thus, in this case, it is clear that the 
first observation tells that we are starting from state 1 while 
the second and the third suggest that we moved to state 2. The 
transition probability values should reflect this behavior.

II.B. RUL Prediction Using a LR-GHMM

A procedure that is specific to the LR-GHMMs is intro
duced here to predict the RUL of a system. This procedure 
relies only on the Left-Right properties and not the kind of 
likelihood function so that it can be potentially applied to any 
LR-HMM. Given a new observation sequence, Otest ¼

o1; :::; ot; :::; oTtest ; and a trained LR-GHMM model λ, 
a discrete probability distribution for RUL(t) is calculated 
estimating the remaining number of time steps first to reach 
the failure state qN from the current time t:

Given the model’s constraints, the probability can be 
recursively calculated with the following procedure:

When qt ¼ SN � 1;

When qt ¼ Si; i � N � 2;

We now define γtðiÞ ¼
Δ Pðqt ¼ Sijo1; ::; ot; λÞ as the prob

ability of being in the state Si at time t, given the observation 
sequence and the model, which can be calculated with the 
well-known forward algorithm. We can then write

Fig. 4. Expected trained HMM form. 
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The point estimate for the RUL, RULðtÞ, is then calcu
lated by averaging the distribution.

II.C. Aggregation of LR-GHMM Predictions

It was noticed that a single LR-GHMM could not repro
duce the intrinsic statistical behavior of items that degrade 
following different degradation rates. One model can repre
sent a cluster of very similar items whose degradation 
evolves in time in a sufficiently similar way. Therefore, 
given a collection, O ¼ ½O1; :::;OM �, of M training 
sequences representing different degradation modes, it was 
decided to train a separate model on each sequence. In other 
words, for each Ob, with b ¼ 1; :::;M , a LR-GHMM λb is 
trained. Notice that in the context of PHM, an appropriate 
observation sequence for training a prognostic model is 
a collection of prognostic parameter values equally spaced 
in time. It is reasonable to select the first value at the instant of 
time when the detection module detects abnormal behavior. 
Accordingly, we will imply that the first observation of a train 
or test sequence will be the one at the time of detection.

When a new test observation sequence, Otest ¼
o1; :::; ot; :::; oTtest ; becomes available, where Ttest indi
cates the time at which we are interested in making 
a prediction, M estimates of the RUL are calculated 
employing the different models, (RULðTtestÞjλb) for 
b ¼ 1; :::;M . Afterward, the estimates are combined 
through an aggregation method. In general, aggregation 
entails assigning a weight to each model’s forecast and 
combining models’ predictions using a weighted average:

Each weight wb can be calculated by means of a membership 
measure between the test sequence and the model. In general, 
the most statistically meaningful measure for HMMs is the 
likelihood PðOtestjλbÞ.[11] However, in this industrial applica
tion, likelihood is not a reliable membership index for test 
sequences since they pass through states in the same order as 
training sequences; the only difference lies in the transition 
rate, but this aspect alone does not affect the index consis
tently. Consequently, a new measure of membership is pro
posed. Given a training sequence, Ob ¼ ob;1; :::; ob;t;

:::; ob;Tb and a test sequence, Otest ¼ o1; :::; ot; :::; oTtest

where ,ðob;t; otÞ ¼ e�
job;t � ot j2

2�s = Gaussian membership 
function with length scale s; TL ¼ minðTb; TtestÞ. In this 
way, the measure gives more importance to the similarity 
as the time index approaches the end of the test sequence. 
However, it is penalized if the test sequence is longer 
than the training one.

Figure 5a shows how the distance job;t � otj is calcu
lated at each time step in the case where the test 
sequence, Otest ¼ o1; :::; ot; :::; o7, starts with observation 
values comparable to the training sequence’s initial 
values. In this case, it makes sense to calculate the point- 
by-point similarity without translating one sequence with 
respect to the other. It is appropriate to use this approach 
when testing a brand-new item or an item that follows 
a perfect repair. In general, the test sequence might start 
with values that differ significantly from those at the 
beginning of the training sequence because of a less- 
than-perfect maintenance operation (accumulated degra
dation). When this happens, a translation of the time 
index of the training sequence is performed to find the 
best time window that maximizes the membership. 
Figure 5b shows the translation effect, where the index 
is shifted by three units.

The proposed similarity measure could provide unre
liable outcomes when the training and the testing 
sequences are characterized by high noise. It was noticed 
that the performance is even worse when the test sequence 
is significantly shorter than the training one. A univariate 
smoothing spline technique[16] is then applied to denoise 
the compared two sequences. In practice, it was decided to 
use the interpolation spline module in the SciPy Python 
library. The smoothing parameter can be optimized by 
following the directions in the documentation.[17]

II.D. Initialization and Set of Model Parameters

The HMMs are characterized by many parameters 
that must be set or initialized before the training. Each 
operation must be separately done for each HMM of the 
framework.

In general, when a LR-GHMM is considered, it is 
a good practice to set the initial probabilities such that 
π1 ¼ 1 and πi ¼ 0 for i > 1 since the state sequence is 
trained to begin in state 1 (and end in state N). However, 
when a test sequence starts with significantly higher 
values than the means of the first hidden states of the 
model, the actual initial state is, with high probability, 
a state with an index higher than 1. It was tried to 
initialize π accordingly to this aspect, but it was noticed 
that a good initialization does not provide any additional 
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benefit to the predictions. The nature of the HMM can 
explain this last phenomenon since even if the initializa
tion of the a priori probabilities is wrong, the model needs 
just a few observations to “understand” the actual hidden 
state to update γtðiÞ, for i ¼ 1; :::;N accordingly.

The initialization of the observation likelihoods is 
another critical task and helps seek the global likelihood 
maximum with the training procedure.[11] Many sophisticated 
techniques have been proposed.[15] However, such sophisti
cation is not necessary when HMMs are trained on prognostic 
parameters that are univariate and monotonic and have suffi
ciently regular functional behavior. It was then established to 
initialize the means and the variances of the likelihoods 
intuitively, as follows. The means are initialized as equally 
spaced values between the upper and lower bounds of the 
training sequence. The standard deviations were set equal to 
half of the distance between the means of two adjacent states.

The same argument for the transition probabilities 
applies to the observation likelihoods. Sophisticated 
methods are explained in the same articles, but in the 
present work, it was decided to initialize as follows:

where T is the number of observations of the training 
sequence. Provided that the number of transitions in the 
training sequence equals the number of hidden states, it is 
reasonable to initialize the transition probability as in Eq. (6).

The choice of the number of states in an HMM 
model is always challenging. We chose the Bayes infor
mation criterion (BIC)[18] to set a good number of states. 
The criterion is here adapted to the current notations as

where k is the number of parameters estimated by the 
model. In the case of a LR-GHMM, k is the sum of the 
number of means N, variances N, and transition prob
abilities (N − 1).a The criterion states that the BIC must 
be minimized, but in our case, the increase in the num
ber of hidden states N continues to reduce the BIC 
value. It is then appropriate to stop increasing N when 
the rate of change is sufficiently low. The last parameter 
to be set before the entire framework can be used is the 
length scale s of the Gaussian membership function, 

,ðob;t; otÞ ¼ e�
job;t � ot j2

2�s , employed in the procedure 
described in Sec. II.C. When the smoothing technique 
is not applied, setting s2 ¼ 2 � σ2

noise is reasonable. When 
the smoothing technique is used, it was noticed that 
dividing the length scale s ¼

ffiffiffi
2
p
� σnoise by a factor ran

ging between 5 and 10 improves the membership 
evaluations.

Fig. 5. (a) Calculation of point differences between two observation sequences with comparable initial values. (b) Calculation of 
point differences between two observation sequences using the time index translation technique. 

a The number of means and variances is equal to the number of 
hidden states, which is N.
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III. CASE STUDY I: ARTIFICIAL DATA SET

The framework was initially tested using artificial 
sequences that simulate the behavior of univariate prognostic 
parameter evolution (after the detection of a fault). It was 
decided to represent the degradation evolution by positive 
exponential functions and set the degradation path by chan
ging the rate coefficient. Then, uncorrelated Gaussian noise is 
added to the function to simulate the measurement error. 
Since we are considering artificial data, for the sake of gen
erality, time t and the prognostic parameter Y are considered 
to be dimensionless:

where D = degradation rate; �,Nð0; σ2
nÞ. Afterward, the 

function is discretized to extract equally spaced values in 
time to generate an observation sequence. The training set is 
obtained by simulating three different sequences ½O1;O2;O3�

with the following degradation rates: 0.7, 1, 1.5. The evolu
tion of each is stopped when the exponential reaches a value 
of e. With this artificial choice, we want to simulate 
a simplified version of a realistic situation where a particular 
item can follow different degradation paths. The result is 
depicted in Fig. 6.

The test set is divided into two groups. In the first group, 
we collected sequences that start with no accumulated degra
dation, while in the second group, some sequences with 
initial degradation were considered. The first group is 
obtained by simulating five different sequences, 
Otest1;1;Otest1;2; :::;Otest1;5, with the following degradation 
rates: 0.7, 0.9, 1, 1.3, and 1.5. Each sequence represents 

a single degradation path evolution considering an item 
whose onset of the degradation is detected at t ¼ 0. Two 
sequences with intermediate degradation rates, 0.9 and 1.3, 
are used to test the coverage of the framework, although the 
training set does not include those rates. The sequences of 
the second group, Otest2;1;Otest2;2; :::;Otest2;5, are instead 
simulated in the following manner. The degradation is ran
domly restored by picking random values between 30% and 
50% of the maximum degradation, and the rates are set to 
have the following five distinct values: 0.7, 0.8, 1, 1.3, 
and 1.5.

III.A. Case Study I: Results

Having three well-distinguished training sequences 
½O1;O2;O3�, the framework trains three separate LR- 
GHMMs: ½λ1; λ2; λ3�. The observation likelihood of the first 
model is visually plotted in Fig. 7; the likelihoods of the other 
two models are very similar to the first one. According to the 
BIC criterion, the optimal number of hidden states is 18 for all 
the models. Figure 8 shows how the BIC values flatten for the 
number of states that are higher than 18. This result makes 
sense because of two aspects: (1) the training sequences are 
exponentially increasing functions that do not present actual 
stationary points and (2) the prognostic parameter values, not 
considering the noise, are defined in the same ranges. Another 
consequence of these aspects is the approximately constant 
standard deviation of the observation sequences, resulting in 
quite equally distributed pdf’s along the domain spanned by 
the prognostic parameter.

Fig. 6. Artificial dataset: training sequences. 
Fig. 7. Observation likelihoods of the model trained on 
the first training sequence (D ¼ 0:7). 
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The performance is visually inspected using the α �
Λ metric.[19] Briefly, the metric evaluates whether the 
following condition is met:

where α = accuracy modifier; Λ 2 ½0; 100� = time index 
that states the progression percentage toward the end of 
life (EoL); RULGðtΛÞ = exact RUL.

Figure 9 shows the plots of the metric evaluation 
on the most relevant test sequences representing the 

first cycle, with α ¼ 0:2. In these plots, each error 
bar’s size equals the standard deviation of the respec
tive RUL distribution. Figure 10 shows the plots of 
the metric evaluation on the most relevant test 
sequences representing the second cycles after 
maintenance.

To show the overall performance of the framework 
for most of the simulated sequences, cumulative relative 
accuracy (CRA), Eq. (10), is also evaluated:

When assessing the prognostic performance of a model, it 
is desirable to weigh the relative accuracies 

RAΛ ¼ 1 � RULðtΛÞ� RULGðtΛÞ
RULGðtΛÞ

� �
higher when closer to the 

EoL ðΛ ¼ 100Þ. This is motivated by the maintenance 
action strategies that often rely on predictions that are 
closer to the EoL. Equation (10) considers this aspect by 

multiplying each RAΛ by Λ and normalizing 1P100

Λ¼10
Λ

� �

. 

The results are listed in Table I.
The visual and numerical results demonstrate the 

accuracy and robustness of the method, displaying good 
prediction capability and interpretability. Further discus
sion of the results can be found in Sec. V.

Fig. 8. Plot of the BIC criterion values for all the 
models. 

Fig. 9. Performance of two test sequences from the first group (no initial degradation): (a) D ¼ 0:9 and (b) D ¼ 1:3:
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III.B. Case Study I: A Closer Look to the Membership 
and the Importance of the Smoothing

The first test sequence from the second group, 
Otest2;1 with D ¼ 0:7; is employed here to highlight how 
the membership values behave and how a RUL prediction 
is computed. The test sequence is truncated at 60% of this 
progression, and three RUL predictions are computed: 
ðRULðTtestÞjλbÞ for b ¼ 1; 2; 3. The memberships are 
then computed according to the procedure explained in 
Sec. II.C. The results are listed in Table II, and a visual 
representation of the operation is plotted in Fig. 11. The 
smoothed version of the test sequence is displayed three 
times with the optimal displacement selected by the 
aggregation algorithm to compare it with each training 
sequence. This visualization allows us to understand that 
the degradation path of the test is exactly the same as 
O1 with D ¼ 0:7. This aspect is coherent with the mem
bership values, w1 >> w2 >> w3.

Fig. 10. Performance of two test sequences from the second group (with initial degradation): (a) D ¼ 0:8 and (b) D ¼ 1:3:

TABLE I 

Artificial Dataset Results: Cumulative Relative Accuracy 

Degradation Rate (Group 1) CRA (Group 1) Degradation Rate (Group 2) CRA (Group 2)

0.7 0.94 0.7 0.93
0.9 0.90 0.8 0.89
1 0.93 1 0.93
1.3 0.91 1.3 0.88
1.5 0.97 1.5 0.90

Fig. 11. Smoothed Otest2;1 displayed three times with the 
optimal displacement selected by the aggregation algo
rithm to compare it with each training sequence. 
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A closer look at the results in Table II helps to 
demonstrate the importance of smoothing. Since it is 
clear that the test sequence degrades in exactly the 
same way as the first training sequence, a good mem
bership function must assign all or most of the weight 
to the first model. When smoothing is not applied, the 
first model is still the most weighted, but there is no 
substantial difference with the weights of the other two 
as in the first case. This then leads to ascribing truth
fulness to the second and third models and translating 
the aggregate RUL toward a lower value than the 
correct one (which is well estimated by the first 
model).

IV. CASE STUDY II: CONDENSER FOULING INSIDE A NPP

The framework is demonstrated with semi- 
simulated data from a NPP. A SIMULINK model 
Asherah[20] was tuned to approximate the Vogtle NPP 
and was used to provide the process data for this 
application. The power level and river temperature 
data came from a 2-year collection of Vogtle Unit 1 
actual process data. Four sensors located in the CWS 
were selected through a correlation analysis to inspect 
the health state of the condenser:

1. x1 ¼ pump inlet temperature:

2. x2 ¼ reactor power:

3. x3 ¼ condenser temperature:

4. x4 ¼ condenser pressure:

The CWS module was then modified to simulate con
denser tube fouling. Since tube fouling causes an increase 
in thermal resistivity and reduces the cross-sectional area 
of the flow rate, two degradation modules were 

accordingly inserted to simulate these behaviors in the 
CWS. The dynamic of the condenser fouling process is 
slow, with typical timescales that range between 6 and 
24 months. Therefore, the simulations for collecting sen
sor data were performed as follows. For each degradation 
path, periodic steady-state responses of the Asherah 
model were simulated to generate a state sequence. The 
values of the degradation parameter for each state were 
set according to the elapsed time and realistic degradation 
functions. Patterns of sensor values were then collected 
from each state to generate time series. Then, the signals 
were analyzed through an autoassociative kernel regres
sion that relied on data collected from a condenser in 
healthy conditions. The generated residuals were exam
ined by a Sequential Probability Ratio Test for fault 
detection.[10] Once a fault is detected, a prognostic para
meter can be computed by subtracting the residual of the 
pump inlet temperature from the condenser temperature 
residual. The parameter can then be fed into the prognos
tic module.

Since the condenser fouling consists of debris 
deposition, the degradation will likely follow 
a saturating trend since after a certain accumulation, 
the debris no longer sticks to the walls. Therefore, for 
this application, we select monotonic functions of the 
fouling factor[21] with saturating behavior.

After detecting a fault, the prognostic framework is 
applied to a set of observation sequences extracted from 
the prognostic parameter. Since the degradation rate is not 
constant over time, it is convenient to distinguish one 
sequence from the other by its length of life. The training 
set ½O1;O2;O3� is obtained by simulating three different 
sequences assigning three different lengths of life: 6 
(months), 9 (months), and 12 (months). Notice that the 
degradation patterns were artificially generated but are 
consistent with what might actually happen 

TABLE II 

Memberships and RUL Predictions of Otest2;1 at 60% of Its Progression 

Memberships and Single-Model Predictions

With Smoothing Without Smoothing RUL Predictions

w1 ¼ 0:477 w1 ¼ 0:364 ðRULðTtestÞjλ1Þ ¼ 0:243
w2 ¼ 0:021 w2 ¼ 0:183 ðRULðTtestÞjλ2Þ ¼ 0:158
w3 ¼ 0:008 w3 ¼ 0:080 ðRULðTtestÞjλ3Þ ¼ 0:122

Aggregated RUL Predictions

With smoothing Without smoothing True RUL
RULðTtestÞ ¼ 0:238 RULðTtestÞ ¼ 0:194 RULGðTtestÞ ¼ 0:247
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experimentally. Condensers may have different lengths of 
life due to the stochasticity of the process, the operational 
and environmental conditions to which they are sub
jected, or repairs that have been made. Thus, with access 
to experimental data, it would not be difficult to select 
good sequences covering an adequately wide span of 
degradation paths. In particular, the requirement for 
a sequence to be good for the training is that no degrada
tion accumulation is present.

In the current application, the evolution of each 
sequence is stopped when the fouling factor RF

[21] 

reaches a value of 4� 10� 6½ðm2 � KÞ=W�. The result is 
depicted in Fig. 12.

The framework is initially tested on the first cycles in 
which the simulated items start without degradation. The 
test set is obtained by simulating sequences with a length 
of life included in the span of the training. These 
sequences represent either brand-new or repaired items 
whose degradation has been completely restored. 
The second cycles are then simulated to represent imper
fect maintenance operations that leave some accumulated 
degradation. The degradation is randomly restored by 
picking normally distributed values of fouling factors 
around 50% of the threshold value.

IV.A. RESULTS

An example of a pair of test sequences is depicted in 
Fig. 13a. Two examples of truncated sequences (at 10% 
of progression for the first cycle and 90% for the second 
cycle) are also plotted on the left. In contrast, the 
smoothed versions of these subsequences and the 
smoothed training sequences are plotted in Fig. 13b. 
The second cycle is displayed three times with the opti
mal displacement selected by the aggregation algorithm 
to compare it with each training sequence. This visualiza
tion allows us to understand that the degradation path of 

Fig. 12. Nuclear data set: training sequences. 

Fig. 13. (a) First (Test 1) and second (Test 2) cycle test sequences with lengths of life of 6 (months) and 4.5 (months), 
respectively. Two examples of sequence progressions (10% and 90%, respectively) are also plotted. (b) Smoothed versions of 
the training and test sequences. 
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the second cycle is somewhere between the first and 
the second training sequences’ degradation paths.

The performance is visually inspected using the α �
Λ metric, according to Eq. (9). Figure 14 shows the plots 
of the α � Λ metric of the performance of the framework 
on the two test sequences. Each error bar’s size in these 
plots equals the standard deviation of the respective RUL 
distribution.

To show the overall performance of the framework 
for most of the simulated sequences, CRA, Eq. (10), is 
also evaluated. The results are listed in Table III.

V. DISCUSSION

The visual and numerical results of both case studies 
demonstrate the accuracy and robustness of the method, 
which handles the criticality of relevant accumulated 
degradation and adapts to the current prognostic 

parameters’ functional behaviors. The framework denotes 
good prediction capability when tested on degradation 
paths for which the LR-GHMMs were trained. The perfor
mance is also good with intermediate paths but with a little 
delay because the membership measure must properly 
weigh the predictions of two models instead of one. 
When an item degrades according to an intermediate path 
and starts with accumulated degradation (second cycles), 
the framework intuitively needs even more time to com
pute an accurate outcome since the membership measure is 
fed with less data than the previous cases. This aspect 
causes a little drop in terms of CRA. However, by looking 
at the plots, we can state that when the progression percen
tage Λ is greater than 50, the prediction capability of the 
method is more than reliable, allowing enough time to 
develop an effective maintenance strategy.

It is worth noticing that all the test sequences were 
selected for the degradation paths (or rates) to be included 
in the training span. Intuitively, the current framework 

Fig. 14. (a) Performance of a first cycle test sequence [length of life 6 (months)]. (b) Performance of a second cycle test sequence 
[length of life 4.5 (months) with accumulated degradation around 50%]. 

TABLE III 

Nuclear Data Set Prognostic Results: Cumulative Relative Accuracy 

Case
Test Length (First 

Cycle) CRA (First Cycle)
Test Length (Second 

Cycle) CRA (Second Cycle)

1 6 months 0.94 4.5 months 0.87
2 9 months 0.95 5.7 months 0.90
3 7.2 months 0.93 4.8 months 0.91
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cannot produce accurate predictions when a test sequence 
degrades with a rate that is outside the span of the train
ing. Figure 15 proves the mentioned limitation, showing 
the predictions of the first case study framework when an 
artificial sequence with D ¼ 0:5 is tested. As expected, 
the framework underpredicts all the RULs since it was 
trained using items that degrade much faster. Future work 
should consider implementing a method that can detect 
when an item degrades according to a path that is not 
covered by training data.

VI. CONCLUSION

Maintenance-dependent processes are difficult to 
handle when partial repairs are considered. The eventual
ity of accumulated degradation and possible change of 
the degradation path can lead to unacceptable prediction 
inaccuracies when standard models are used. This study 
presents a strategy to deal with the critical issues that 
imperfect repairs involve. The strategy considers the 
aggregation of LR-GHMM, which handles the accumu
lated degradation after the repairs and guarantees high 
performance even when the repair changes the degrada
tion rate of an item. In the current work, only the infor
mation about the kind of maintenance action was used to 
inform the predictions. Future work might consider lever
aging other information stored in maintenance records to 
inform the aggregation algorithm through Bayesian 
techniques.

Applying the strategy to an artificial and realistic 
nuclear case study proved the approach is an effective 
and interpretable solution. The applications showed that 
LR-GHMMs can adapt to different degradation func
tional shapes over time, which is a great advantage over 
other methods. In fact, some previous works required 
selecting a mathematical function to model the degrada
tion, which is not always a straightforward and reliable 
solution, especially when different degradation paths are 
involved. The main drawback of the methodology is the 
high standard deviation of the RUL prediction, which is 
difficult to reduce since it is intrinsic to the HMM 
method. Although previous works achieved much lower 
prediction standard deviations, the proposed frameworks 
depend on the choice of mathematical functions to model 
the degradation and rely on the availability of many 
maintenance records. These requirements can sometimes 
limit the applicability of these methods in some scenarios 
and could lead the user to prefer LR-GHMMs.
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