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Abstract—AC optimal power flow (OPF) is of great significance 

for power system security, reliability, and economy. As an NP-

hard problem, its solution can be time consuming by traditional 

optimization techniques. For more efficient AC OPF algorithms, a 

Direct Acyclic Graph Neural Network (DAG-NN) is proposed in 

this paper, which enables an explicit design of a neural network 

utilizing the intrinsic structural information of the problem to be 

solved. The approach first reformulates an iterative Newton-

Raphson based AC OPF algorithm as a compositional function, 

accordingly constructs a DAG, and then designs the neural 

network by realizing its each node by a shallow neural network. 

The paper also analyzes errors of the DAG-NN.  The proposed 

approach is tested on a modified PJM 5-bus system.  

Index Terms--AC optimal power flow, compositional function, 

directed acyclic graph, DAG, neural network. 

I. INTRODUCTION  

  As a vital reference for power system operation, AC optimal 
power flow (OPF) plays an important role in power system 
planning, economic dispatch and system control [1]-[3]. 
However, due to the nonconvexity of a nonlinear AC OPF 
model, its numerical solution can be time-consuming if many 
iterations are needed. To reduce the difficulty of AC OPF, 
relaxation approaches have been utilized by [4]-[6] to make the 
problem convex by, e.g., the second-order cone program, semi-
definite programming, and the quadratic convex relaxation.  

      In recent years, learning-based tools have been widely used 
to solve power system problems such as load forecasting [7], 
vulnerability analysis [8], transient stability prediction [9]-[10], 
and voltage stability assessment [11]-[12]. These tools shift a 
majority of computational burdens, such as trainings based on 
big data, to an offline stage, so they can be highly efficient in 
the online stage for real-time applications. Many studies have 
applied machine learning (ML) techniques to solve the AC 
OPF. Some used ML to predict final AC OPF solutions directly 
[13], and others used ML to find a good initial solution, which 
can be further refined by a traditional numerical solver. For 
example, [14] adopted ML in predicting warm start points of 
the AC OPF to accelerate the computational speed of numerical 
methods, and [15] utilized ML to classify activations of 
constraints. However, the applications of ML approaches often 
ignore the intrinsic information of the structure of the AC OPF 
model. Thus, a question arises: can we utilize the mathematical 

structure of an AC OPF model to design the ML tool such as a 
neural network (NN)? Compact Directed Acyclic Graphs 
(DAGs) have been used in literature to help design the structure 
of a neural network [16]-[17]. From [17], the solution of any 
problem can be essentially formulated as a compositional 
function, which can be represented by a DAG and then be 
further approximated by an NN. Inspired by [17], this paper 
develops a Directed Acyclic Graph Neural Network (DAG-
NN)  to address the computational challenges of the AC OPF 
problem. Also, there is no theoretical way to determine the 
structure of a traditional NN, i.e., the number of layers and 
neurons. The DAG-NN provides a way to utilize the intrinsic 
information of the AC OPF structure to explicitly design the 
structure of the NN and thus have the potential to improve 
accuracy. In this work, we target at finding an AC OPF solution 
close to the true solution. If a high accuracy is desired, the 
solution can be used as a good initial guess and be refined by a 
numerical solver.  

      In the rest of the paper, Section II describes how to construct 
the proposed DAG-NN for AC OPF; Section III presents two 
case studies on a 2-bus toy system and a modified PJM 5-bus 
system. Conclusions and future work are summarized in 
Section IV. 

II. PROPOSED DAG-NN FOR AC OPF 

      This section first introduces the basic concept of a DAG to 
represent a compositional function, and then describes how to 
use a DAG to construct an NN to approximate the 
compositional function, and finally presents how to formulate 
the AC OPF problem as a compositional function and build a 
DAG-NN for AC OPF.  

A. Introduction of DAGs 

      The DAGs in this paper are composed of a finite number of 
nodes and directed arrows, where each node represents a simple 
function, and directed arrows determine the interconnections of 
those simple functions. A DAG does not have directed cycles. 

      Considering a compositional function below: 

 
1 2 3 1 2 2 3 3( , , ) cosf x x x x x x x x= − +  (1) 

      Its DAG is shown in Fig. 1, where the nodes represent 
simple functions of the compositional function. In the graph, 
the nodes are marked with different colors that represent linear 
and nonlinear functions. The DAG of this compositional 
function can be used to construct an NN by replacing its each 
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node by a shallow NN.        
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Figure 1.   A DAG of the compositional function 𝑓 

      In general, the complexity of solving non-convex OPF 
problems grows exponentially with the dimensionality. 
However, by taking advantage of the compositional features of 
DAGs, it is proved in [17] that the complexity of solving the 
problem using NN has a complexity that grows at a polynomial 
rate. A compositional function f represented by a DAG can be 
approximated by replacing each node of the DAG with a 

shallow NN, and then the DAG is approximated by a NN 𝐟. 

      The error of the NN satisfies (2) which is proved in [17]. 

( ) ( ) −   j jjp
x x Lf

f f                             (2) 

where 𝜀𝑗  is the local error caused by the 𝑗𝑡ℎ  node 

approximation with the shallow NN; 𝐿𝑗
𝐟  is the Lipschitz 

constant associated with the 𝑗𝑡ℎ node; and the left-hand side is 
the error defined by pth norm [17]. 

B. Formulation of AC OPF  

      The AC OPF problem is formulated as below: 
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where 𝑐0𝑖, 𝑐1𝑖, 𝑐2𝑖 are coefficients of the cost function; 𝑃𝐺𝑖  and 
𝑄𝐺𝑖  represent the active and reactive power outputs of 
generator i, respectively; 𝑌𝑖𝑗  and 𝜃𝑖𝑗  represent the magnitude 

and angle of the admittance, respectively; 𝑉𝑖  and 𝛿𝑖  represent 
the magnitude and angle of the voltage, respectively; 𝑃𝐷𝑖 and 
𝑄𝐷𝑖  are the active and reactive power demands, respectively; 
|𝑆𝑙|  is the line flow magnitude; 𝑛𝑔 , 𝑛𝑏  and 𝑛𝑙  represent the 

number of generators,  buses and lines, respectively. 

      The AC OPF problem in (3) can be converted into an 
unconstrained problem by applying Lagrange multipliers to 
power flow constraints given in (3b). Then the cost function 
given in (3a) becomes the Lagrange function: 
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      Thus, the original problem is transformed to the problem 
described by the equation below: 

0 =                                          (5) 

      The solution of (5) may not be unique, and one may find a 
local minimum because of the non-convexity. Thus, the DAG-

NN is applied in this paper to reduce the complexity of this 
problem.   

C. The DAG-NN for AC OPF  

      Solving the AC OPF problem can be formulated as a 
compositional function, and the compositional function can be 
represented by a DAG. Then, the DAG is utilized to design the 
DAG-NN. In this way, the DAG-NN takes advantage of the 
mathematical structure of the AC OPF and has the potential to 
improve accuracy compared with a traditional NN designed 
without any structural information of the problem. To formulate 
the compositional function of AC OPF, the Newton-Raphson 
method is applied to solve (5) by iterations which each 
calculates: 

[ , , , , ] = PG QG Vy                            (6a) 

1 ( )+ = +  = +k k k k k
y y y y h y                     (6b) 

( ) ( )= +N y y h y                                (6c) 

1
2( )

−

 = −   h y                         (6d) 

where y is the current variable vector; h is the correction, i.e., 
Δy for each iteration; k denotes the current iteration number, 
k+1 denotes the next iteration; N(y) includes the updated 
variables.  

      From the definition of DAGs in subsection II-A, one 
iteration of the Newton-Raphson method can be represented by 
a DAG, named 1-DAG, shown below in Fig. 2. In addition, a 
K-DAG is defined as the series connection of K repetitions of 
the same 1-DAG, which approximates the computation by K 
iterations of the Newton-Raphson method. Also, h(y) 
represents Δy in each iteration, which is also a compositional 
function and will be illustrated in detail in subsection II-E. 

 
Figure 2.   1-DAG of one Newton-Raphson iteration 

      As illustrated above, solving the AC OPF by the Newton-
Raphson method is equal with solving the same compositional 
functions repeatedly. Therefore, the compositional function in 
one iteration can be represented by a DAG, and each node of 
the DAG which represents a simple function can be estimated 
by a shallow NN. Thus, a DAG-NN for AC OPF is constructed 
by replacing each node of the K-DAG with a shallow NN. 
Moreover, according to the mathematical forms of the AC OPF 
shown in (3)-(6), new activation functions including the 
sinusoidal function (sinx) and the quadratic function (x2) are 
applied to the DAG-NN. 

D. Error analysis on the DAG-NN 

      Suppose that the number of iterations for the Newton-
Raphson method is K, and then the optimal solution can be 
expressed as follows:   

( )( ) ( ) ( ) ( ) ( ) ( )     = 

K

K
N N N Ny y y                  (7) 



      According to subsection II-A, there exists an NN 
approximating 𝐡 satisfying: 

( ) ( ) −  NN

j jjp
Lh

h y h y                          (8) 

where 𝜀𝑗  is the local error caused by the 𝑗𝑡ℎ  node 

approximation with the shallow NN, and 𝐿𝑗
𝐡  is the Lipschitz 

constant associated with the 𝑗𝑡ℎ node.  
      Let NNN (y) be the NN obtained by substituting hNN(y) for 
h(y) in (6c), and then we have:  

( ) ( ) ( ) ( ( ))

                             ( ) ( ) 

− = + − +

= −  

NN NN

p p

NN

j jjp

N N

Lh

y y y h y y h y

h y h y

          (9)  

      Define: ( )( ) = 
K

NN NNN . Let the Lipschitz constant of N(y) 

be L. Applying the Proposition 3.10 in [17], we can get 
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      Suppose that the error tolerance of the Newton-Raphson 
method is 𝑒𝑁. Namely 

( )( ) ( ) ( )
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      Finally, the error of the NN for AC OPF can be obtained 
from (10) and (11) in the following way: 
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E.  The prediction of DAG structure for AC OPF        

      The DAG of the AC OPF is used to construct the structure 
of an NN approximating the solution of AC OPF. However, to 
construct the DAG-NN for the AC OPF, the explicit expression 
of function 𝐡 is required, which cannot be obtained for most 
high-dimensional systems due to the complexity of calculating 
matrix inverse. To simplify the DAG, the chord method [18] is 
applied replacing a standard Newton-Raphson method, and 
conducts (13) for each iteration, where B is a constant matrix 
approximating the inverse of matrix 2 . 

  ( ) ( )= +N y y h y                               (13a) 

( ) = − Bh y                               (13b) 

      Thus, the DAG structure of function h(y) becomes a linear 
combination of all the basic elements of  , which can be 

easily obtained and applied to large systems. According to 
subsection II-B, the basic elements of   consist of only three 

different operations: (a) linear operations; (b) sinusoid 
operation, which can be realized by neurons with a sinusoid 
activation function; (c) multiplication operation. Because xy = 
[(x+y)2-(x-y)2]/4, the multiplication operation can be realized by 
quadratic and linear neurons.  

      Fig. 3 shows a general DAG of function h(y) constructed 
from the chord method. Here, y is an n-dimensional vector, and 
h(y) = [h1, h2, …, hn]T. Part (a) includes pure linear nodes, 
which are used to conduct the linear operations for the previous 
layer; part (b) includes sinusoid neurons; part (c) and part (d) 
together act as multiplication operations, and the same for the 
rest such as (e) and (f), (g) and (h). Here, we just show a typical 

structure with 9 layers. However, the specific layers can be 
adjusted for different cases.  
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Figure 3.   A DAG of function h(y) based on the chord method  

III. CASE STUDIES 

      This section first illustrates the idea of the proposed DAG-
NN on a 2-bus toy system. Next, the DAG-NN is tested on a 
modified PJM 5-bus system. All simulations are conducted on 
a desktop computer with Intel core i7 CPU and 16GB RAM. 

A. 2-bus system 

      A 2-bus system is shown in Fig. 4. It has two generators G1 
and G2, and one load PL2. The costs of the two generators are

2

1 1 1: 0.01 2  $/C P P hr+  and 2

2 2: 0.03  $/C P hr , respectively.    

 
Figure 4.   A 2-bus system       

      Setting the based power as 100 MVA, the AC OPF problem 
can be formulated as below: 

( ) ( ) ( )
2 2

1 1 2

1 2 2

1 1 2 1 2 2 2

min 0.01 100 2 100 0.03 100

. .

sin( ) / 1 1 sin(0 ) /1 sin   

  =  +  + 

  + = =

      = − =   − = −

C PG PG PG

s t PG PG PL a

PG VV X

   (14) 

      Equation (14) can be simplified as: 
2 2

1 1 2

1 2 2

1 2

min 100( 2 3 )

. .

sin

C PG PG PG

s t PG PG PL a

PG 

  = + +

  + = =

      = −

              (15) 

      The problem defined in (15) is equivalent to the problem 
formulated below: 
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      Apply Lagrange multipliers to (16). Here is:  
2 2

2 2 2 2 2( sin ) 2sin 3 ( sin )PG PG a   = − − + − − + −      (17) 

      For simplicity, changing the notations of two variables 

following u=PG2 and x=, (17) becomes (18): 
2 2( sin ) 2sin 3 ( sin )x x u x u a= − − + − − + −              (18) 

      The local minimum of (18) is obtained by solving (19) 
below with zero gradient of the objective function: 
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      For the 2-bus system, we use both the standard Newton-
Raphson method and chord method to construct the DAG-NN. 



1)  Error analysis of DAG-NN on the 2-bus system      

      By substituting (19) to (6d), h(y) and N(y) of the standard 
Newton-Raphson method can be obtained, and a DAG of h(y) 
for the 2-bus system is shown in Fig. 5. In the DAG, the nodes 
representing simple functions are approximated by shallow 
NNs, each of which is trained separately. A DAG-NN named 
“1-DAG-NN” that approximates one Newton-Raphson 
iteration is generated by substituting all these shallow NNs into 
Fig. 2. Then another DAG-NN called “4-DAG-NN” is 
constructed by integrating four 1-DAG-NNs in a series way, 
which corresponds to four iterations in terms of the Newton-
Raphson method. The 4-DAG-NN is used for solving the AC 
OPF of the 2-bus system here. 
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Figure 5.   A DAG of function h(y) based on the Newton-Raphson method      

     A dataset for the NN training and testing is generated by 
solving the optimal power flow with the Newton-Raphson 
method under different loading conditions within a variation of 
30%. The error tolerance of the Newton-Raphson method is set 
as 10-10, and solutions that can converge within 4 iterations are 
picked to make up the dataset. 

      In this case, the l∞-norm is used to measure the error. 𝜀𝑗 can 

be obtained by calculating the l∞-norm of the test data error for 

the 𝑗𝑡ℎ  shallow NN; The Lipschitz constant L of N(y) is 
determined by the expression of N(y); The Lipschitz constant 

associated with the 𝑗𝑡ℎ  node 𝐿𝑗
𝐡  defined in [17] can be 

calculated according to the DAG shown in Fig. 5. According to 
(12), the error upper bound of the 4-DAG-NN is: 
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      After training the 4-DAG-NN with the training dataset, the 
AC OPF is predicted. All the predicted results are found to 
satisfy the constraints and are feasible, and then the error is 
calculated by comparing the results with true values.  Finally, 
the l∞-norm of test data error for the 4-DAG-NN is obtained as 
1.02E-09, which is smaller than the error upper bound 
calculated above. This validates that the DAG can be utilized to 

design NNs, and the error upper bound can be calculated 
according to (12).  

2)  DAG-NN performance of the 2-bus system       

      To reduce the complexity of the DAG, a DAG-NN based 
on the chord method instead of the standard Newton-Raphson 
method is then constructed. In this case, three DAG-NNs are 
constructed based on the chord method with different 
repetitions of the DAG structure. Three traditional NNs with 
the same number of neurons are also constructed for 
comparison. Case 1 and case 4 have the same number of 
neurons, and the same for case 2 and case 5, as well as case 3 
and case 6.  For this 2-bus system, one DAG structure consists 
of 22 neurons, so a K-DAG has 22×K neurons. To avoid 
influence of random factors, 100 NN models are trained with 
different initial parameters for each case. The errors of the top 
1, top 10, and top 50 results using different NNs are presented 
in Table I. Table II shows the time costs for the 2-bus system. 
As shown in Table I and Table II, all DAG-NNs have smaller 
mean absolute errors and time costs than traditional NNs with 
the same NN size. This corroborates the good performance of 
the DAG-NN.  

TABLE I.  MEAN ABSOLUTE ERRORS OF THE COST FUNCTION 

                                  Rank 

      Case 
Top 1  Top 10 Top 50 

DAG-NNs 

Case 1: 2-DAG-NN 1.08E-07 1.47E-06 2.18E-06 

Case 2: 3-DAG-NN 1.01E-08 9.20E-08 1.48E-06 

Case 3: 4-DAG-NN 7.59E-09 3.23E-08 3.21E-07 

Traditional 
NNs 

Case 4: 2 hidden layers 2.63E-06 5.58E-06 2.74E-05 

Case 5: 3 hidden layers 2.70E-06 3.45E-06 6.87E-06 

Case 6: 4 hidden layers 1.33E-06 2.50E-06 5.31E-06 

TABLE II.  TIME COSTS FOR ONE TEST DATA OF THE 2-BUS SYSTEM 

Case Time cost (ms) 

DAG-NNs 

Case 1: 2-DAG-NN 0.96 

Case 2: 3-DAG-NN 1.89 

Case 3: 4-DAG-NN 2.02 

Traditional NNs 

Case 4: 2 hidden layers 1.02 

Case 5: 3 hidden layers 2.00 

Case 6: 4 hidden layers 2.99 

B. Case Study on a modified PJM 5-bus system 

      A modified PJM 5-bus system is shown in Fig. 6. 
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Figure 6.   A modified PJM 5-bus system 

      A public dataset for learning AC OPF developed by NREL 
using a toolbox named ‘Opf-learn’ is used here [19]. Fig. 7 
shows the results of a 3-DAG-NN and a traditional NN of the 
same size. In Fig. 7, errors of both the DAG-NN and the 
traditional NN are due to violations of power flow equations or 
inequality constraints. Therefore, a further correction step is 
required to improve the accuracy and feasibility. As a common 
practice, the predicted results provided by NNs are chosen as 
warm start points to resolve the AC OPF problem by the 
MATPOWER Interior Point Solver (MIPS). Starting from the 
warm start points obtained by DC OPF, the DAG-NN and the 



traditional NN, all the 3000 testing cases can converge to 
accurate results, whose relative errors of the costs are within [-
0.0005%, 0.0005%]. Therefore, the DAG-NN can provide a 
good initial guess for the AC OPF. Although DC OPF can also 
provide a good initial point for the AC OPF, it is not as efficient 
as the proposed NN which can be observed in Table III. 
Because the DAG-NN is not a fully connected network, it has 
a smaller number of parameters compared with the traditional 
NN with the same number of neurons. It is expected to be more 
efficient than the traditional one, but the result shown in Table 
III is contrary to the expectation. One possible reason is that 
although the DAG-NN accelerates due to a smaller number of 
parameters, the customized construction of the DAG-NN is not 
as efficient as the traditional one which can be easily 
constructed from the package of PyTorch. From the case study, 
the DAG-NN is very competitive with the traditional NN. 
Moreover, the DAG-NN is promising in reducing the number 
of neurons thanks to the utilization of structural information of 
the problem. Its potential on larger cases will be tested in our 
future work. 

  
(a) Error of cost function (b) Relative error of cost function 

Figure 7.   The error of the cost function for different NNs       

TABLE III.  TIME COSTS FOR ONE TEST DATA OF THE 5-BUS SYSTEM 

Case Time cost (ms) 

DAG-NN 47.07 

Traditional NN 45.34 

DC OPF 61.28 

IV. CONCLUSION 

      This paper formulates the process of solving AC OPF by the 
Newton-Raphson method as a compositional function, and the 
compositional function is then represented by a DAG, which is 
used to design and develop a NN. The error of the proposed 
DAG-NN was analyzed. Also, the DAG-NN was tested on a 2-
bus system and a modified PJM 5-bus system. Case study results 
validate that the proposed DAG-NN has roughly equal or better 
performance than the traditional NN. Therefore, it is promising 
to include the DAG structure to design NNs. Furthermore, this 
approach also has good potential for other problems that can be 
formulated as a compositional function, not limited to the AC 
OPF discussed in this paper. The future work will focus on using 
other approaches instead of the chord method to achieve a more 
accurate DAG.  
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