

 A Directed Acyclic Graph Neural Network for AC

Optimal Power Flow

Zhenping Guo1, Kai Sun1, Senior Member, IEEE, Byungkwon Park2, Member, IEEE, Srdjan Simunovic3, Wei Kang4, Fellow, IEEE
1Department of EECS, University of Tennessee, Knoxville, TN, USA

2Department of Electrical Engineering, Soongsil University, Seoul, South Korea
3Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA

4Department of Applied Mathematics, Naval Postgraduate School, Monterey, CA, USA

zguo19@vols.utk.edu, kaisun@utk.edu, bkpark@ssu.ac.kr, simunovics@ornl.gov, wkang@nps.edu

Abstract—AC optimal power flow (OPF) is of great significance

for power system security, reliability, and economy. As an NP-

hard problem, its solution can be time consuming by traditional

optimization techniques. For more efficient AC OPF algorithms, a

Direct Acyclic Graph Neural Network (DAG-NN) is proposed in

this paper, which enables an explicit design of a neural network

utilizing the intrinsic structural information of the problem to be

solved. The approach first reformulates an iterative Newton-

Raphson based AC OPF algorithm as a compositional function,

accordingly constructs a DAG, and then designs the neural

network by realizing its each node by a shallow neural network.

The paper also analyzes errors of the DAG-NN. The proposed

approach is tested on a modified PJM 5-bus system.

Index Terms--AC optimal power flow, compositional function,

directed acyclic graph, DAG, neural network.

I. INTRODUCTION

 As a vital reference for power system operation, AC optimal
power flow (OPF) plays an important role in power system
planning, economic dispatch and system control [1]-[3].
However, due to the nonconvexity of a nonlinear AC OPF
model, its numerical solution can be time-consuming if many
iterations are needed. To reduce the difficulty of AC OPF,
relaxation approaches have been utilized by [4]-[6] to make the
problem convex by, e.g., the second-order cone program, semi-
definite programming, and the quadratic convex relaxation.

 In recent years, learning-based tools have been widely used
to solve power system problems such as load forecasting [7],
vulnerability analysis [8], transient stability prediction [9]-[10],
and voltage stability assessment [11]-[12]. These tools shift a
majority of computational burdens, such as trainings based on
big data, to an offline stage, so they can be highly efficient in
the online stage for real-time applications. Many studies have
applied machine learning (ML) techniques to solve the AC
OPF. Some used ML to predict final AC OPF solutions directly
[13], and others used ML to find a good initial solution, which
can be further refined by a traditional numerical solver. For
example, [14] adopted ML in predicting warm start points of
the AC OPF to accelerate the computational speed of numerical
methods, and [15] utilized ML to classify activations of
constraints. However, the applications of ML approaches often
ignore the intrinsic information of the structure of the AC OPF
model. Thus, a question arises: can we utilize the mathematical

structure of an AC OPF model to design the ML tool such as a
neural network (NN)? Compact Directed Acyclic Graphs
(DAGs) have been used in literature to help design the structure
of a neural network [16]-[17]. From [17], the solution of any
problem can be essentially formulated as a compositional
function, which can be represented by a DAG and then be
further approximated by an NN. Inspired by [17], this paper
develops a Directed Acyclic Graph Neural Network (DAG-
NN) to address the computational challenges of the AC OPF
problem. Also, there is no theoretical way to determine the
structure of a traditional NN, i.e., the number of layers and
neurons. The DAG-NN provides a way to utilize the intrinsic
information of the AC OPF structure to explicitly design the
structure of the NN and thus have the potential to improve
accuracy. In this work, we target at finding an AC OPF solution
close to the true solution. If a high accuracy is desired, the
solution can be used as a good initial guess and be refined by a
numerical solver.

 In the rest of the paper, Section II describes how to construct
the proposed DAG-NN for AC OPF; Section III presents two
case studies on a 2-bus toy system and a modified PJM 5-bus
system. Conclusions and future work are summarized in
Section IV.

II. PROPOSED DAG-NN FOR AC OPF

 This section first introduces the basic concept of a DAG to
represent a compositional function, and then describes how to
use a DAG to construct an NN to approximate the
compositional function, and finally presents how to formulate
the AC OPF problem as a compositional function and build a
DAG-NN for AC OPF.

A. Introduction of DAGs

 The DAGs in this paper are composed of a finite number of
nodes and directed arrows, where each node represents a simple
function, and directed arrows determine the interconnections of
those simple functions. A DAG does not have directed cycles.

 Considering a compositional function below:

1 2 3 1 2 2 3 3(, ,) cosf x x x x x x x x= − + (1)

 Its DAG is shown in Fig. 1, where the nodes represent
simple functions of the compositional function. In the graph,
the nodes are marked with different colors that represent linear
and nonlinear functions. The DAG of this compositional
function can be used to construct an NN by replacing its each

This work was supported in part by UT-Battelle, LLC, through the U.S.

Department of Energy under Contract DE-AC05-00OR22725.

mailto:zguo19@vols.utk.edu
mailto:kaisun@utk.edu
mailto:bkpark@ssu.ac.kr
mailto:simunovics@ornl.gov
mailto:wkang@nps.edu

node by a shallow NN.

1 2 3z z z− +

~
1

x
0,1

f

~
2

x
0,2

f

~
3

x
0,3

f

1,1
f

1,2
f

1,3
f

2,1
f

General node

Linear node

1 2x x

3cos x

2 3x x

~ f

1z

2z

3z

Figure 1. A DAG of the compositional function 𝑓

 In general, the complexity of solving non-convex OPF
problems grows exponentially with the dimensionality.
However, by taking advantage of the compositional features of
DAGs, it is proved in [17] that the complexity of solving the
problem using NN has a complexity that grows at a polynomial
rate. A compositional function f represented by a DAG can be
approximated by replacing each node of the DAG with a

shallow NN, and then the DAG is approximated by a NN 𝐟.

 The error of the NN satisfies (2) which is proved in [17].

() () −   j jjp
x x Lf

f f (2)

where 𝜀𝑗 is the local error caused by the 𝑗𝑡ℎ node

approximation with the shallow NN; 𝐿𝑗
𝐟 is the Lipschitz

constant associated with the 𝑗𝑡ℎ node; and the left-hand side is
the error defined by pth norm [17].

B. Formulation of AC OPF

 The AC OPF problem is formulated as below:

 2

2 1 01
min

gn

i i i i ii
F c PG c PG c

=
= + + (3a)

1

1

 . cos()
 ()

 sin()

b

b

n

i i i i j ij i j ijj

bn

i i i i j ij i j ijj

s t P PG PD V V Y
i = 1,2...n

Q QG QD V V Y

  

  

=

=

 = − − − −



 = − − − − 






 (3b)

, , ()i min i i max bV V V i = 1,2...n  (3c)

, ,

, ,

()

i min i i max

g

i min i i max

PG PG PG
i = 1,2...n

QG QG QG

  


  

 (3d)

 () l l lmax
S S l =1,2...n (3e)

where 𝑐0𝑖, 𝑐1𝑖, 𝑐2𝑖 are coefficients of the cost function; 𝑃𝐺𝑖 and
𝑄𝐺𝑖 represent the active and reactive power outputs of
generator i, respectively; 𝑌𝑖𝑗 and 𝜃𝑖𝑗 represent the magnitude

and angle of the admittance, respectively; 𝑉𝑖 and 𝛿𝑖 represent
the magnitude and angle of the voltage, respectively; 𝑃𝐷𝑖 and
𝑄𝐷𝑖 are the active and reactive power demands, respectively;
|𝑆𝑙| is the line flow magnitude; 𝑛𝑔 , 𝑛𝑏 and 𝑛𝑙 represent the

number of generators, buses and lines, respectively.

 The AC OPF problem in (3) can be converted into an
unconstrained problem by applying Lagrange multipliers to
power flow constraints given in (3b). Then the cost function
given in (3a) becomes the Lagrange function:

 2

2 11

gn

i i i i oi pi i qi ii
c PG c PG c P Q 

=
= + + −  −  (4)

 Thus, the original problem is transformed to the problem
described by the equation below:

0 = (5)

 The solution of (5) may not be unique, and one may find a
local minimum because of the non-convexity. Thus, the DAG-

NN is applied in this paper to reduce the complexity of this
problem.

C. The DAG-NN for AC OPF

 Solving the AC OPF problem can be formulated as a
compositional function, and the compositional function can be
represented by a DAG. Then, the DAG is utilized to design the
DAG-NN. In this way, the DAG-NN takes advantage of the
mathematical structure of the AC OPF and has the potential to
improve accuracy compared with a traditional NN designed
without any structural information of the problem. To formulate
the compositional function of AC OPF, the Newton-Raphson
method is applied to solve (5) by iterations which each
calculates:

[, , , ,] = PG QG Vy (6a)

1 ()+ = +  = +k k k k k
y y y y h y (6b)

() ()= +N y y h y (6c)

1
2()

−

 = −   h y (6d)

where y is the current variable vector; h is the correction, i.e.,
Δy for each iteration; k denotes the current iteration number,
k+1 denotes the next iteration; N(y) includes the updated
variables.

 From the definition of DAGs in subsection II-A, one
iteration of the Newton-Raphson method can be represented by
a DAG, named 1-DAG, shown below in Fig. 2. In addition, a
K-DAG is defined as the series connection of K repetitions of
the same 1-DAG, which approximates the computation by K
iterations of the Newton-Raphson method. Also, h(y)
represents Δy in each iteration, which is also a compositional
function and will be illustrated in detail in subsection II-E.

Figure 2. 1-DAG of one Newton-Raphson iteration

 As illustrated above, solving the AC OPF by the Newton-
Raphson method is equal with solving the same compositional
functions repeatedly. Therefore, the compositional function in
one iteration can be represented by a DAG, and each node of
the DAG which represents a simple function can be estimated
by a shallow NN. Thus, a DAG-NN for AC OPF is constructed
by replacing each node of the K-DAG with a shallow NN.
Moreover, according to the mathematical forms of the AC OPF
shown in (3)-(6), new activation functions including the
sinusoidal function (sinx) and the quadratic function (x2) are
applied to the DAG-NN.

D. Error analysis on the DAG-NN

 Suppose that the number of iterations for the Newton-
Raphson method is K, and then the optimal solution can be
expressed as follows:

()() () () () () ()     = 

K

K
N N N Ny y y (7)

 According to subsection II-A, there exists an NN
approximating 𝐡 satisfying:

() () −  NN

j jjp
Lh

h y h y (8)

where 𝜀𝑗 is the local error caused by the 𝑗𝑡ℎ node

approximation with the shallow NN, and 𝐿𝑗
𝐡 is the Lipschitz

constant associated with the 𝑗𝑡ℎ node.
 Let NNN (y) be the NN obtained by substituting hNN(y) for
h(y) in (6c), and then we have:

() () () (())

 () () 

− = + − +

= −  

NN NN

p p

NN

j jjp

N N

Lh

y y y h y y h y

h y h y

 (9)

 Define: ()() = 
K

NN NNN . Let the Lipschitz constant of N(y)

be L. Applying the Proposition 3.10 in [17], we can get

 ()
1

() () ()
1

 
−

 − 
−


K

K NN

j jjp

L
N L

L

h
y y

 (10)

 Suppose that the error tolerance of the Newton-Raphson
method is 𝑒𝑁. Namely

()() () ()
K

N
p

N e −  y y (11)

 Finally, the error of the NN for AC OPF can be obtained
from (10) and (11) in the following way:

() ()

() ()

() () () () () () () ()

() () () () () ()

1

1

K KNN NN

p p

K KNN

p p

K

j j Nj

N N

N N

L
L e

L

   

 



− = −  +  −

   − + − 

−
  +

−
 h

y y y y y y

y y y y

 (12)

E. The prediction of DAG structure for AC OPF

 The DAG of the AC OPF is used to construct the structure
of an NN approximating the solution of AC OPF. However, to
construct the DAG-NN for the AC OPF, the explicit expression
of function 𝐡 is required, which cannot be obtained for most
high-dimensional systems due to the complexity of calculating
matrix inverse. To simplify the DAG, the chord method [18] is
applied replacing a standard Newton-Raphson method, and
conducts (13) for each iteration, where B is a constant matrix
approximating the inverse of matrix 2 .

 () ()= +N y y h y (13a)

() = − Bh y (13b)

 Thus, the DAG structure of function h(y) becomes a linear
combination of all the basic elements of  , which can be

easily obtained and applied to large systems. According to
subsection II-B, the basic elements of  consist of only three

different operations: (a) linear operations; (b) sinusoid
operation, which can be realized by neurons with a sinusoid
activation function; (c) multiplication operation. Because xy =
[(x+y)2-(x-y)2]/4, the multiplication operation can be realized by
quadratic and linear neurons.

 Fig. 3 shows a general DAG of function h(y) constructed
from the chord method. Here, y is an n-dimensional vector, and
h(y) = [h1, h2, …, hn]T. Part (a) includes pure linear nodes,
which are used to conduct the linear operations for the previous
layer; part (b) includes sinusoid neurons; part (c) and part (d)
together act as multiplication operations, and the same for the
rest such as (e) and (f), (g) and (h). Here, we just show a typical

structure with 9 layers. However, the specific layers can be
adjusted for different cases.

Linear node

2~ h

1~ h

()2 1sinw w x b+

Layer 1 Layer 2 Layer 3

()
2

wx b+

Layer 8

~PG

~QG

~

~V

~PD

~QD

...
...

...
...

...
...

Layer 4 Layer 5 Layer 6 Layer 7

~

Layer 0

...

~ nh
(b) (c) (d)

...
...

...
...

(e) (f)

...
...

...
...

(g) (h)

(a)

Figure 3. A DAG of function h(y) based on the chord method

III. CASE STUDIES

 This section first illustrates the idea of the proposed DAG-
NN on a 2-bus toy system. Next, the DAG-NN is tested on a
modified PJM 5-bus system. All simulations are conducted on
a desktop computer with Intel core i7 CPU and 16GB RAM.

A. 2-bus system

 A 2-bus system is shown in Fig. 4. It has two generators G1
and G2, and one load PL2. The costs of the two generators are

2

1 1 1: 0.01 2 $/C P P hr+ and 2

2 2: 0.03 $/C P hr , respectively.

Figure 4. A 2-bus system

 Setting the based power as 100 MVA, the AC OPF problem
can be formulated as below:

() () ()
2 2

1 1 2

1 2 2

1 1 2 1 2 2 2

min 0.01 100 2 100 0.03 100

. .

sin() / 1 1 sin(0) /1 sin   

 =  +  + 

 + = =

 = − =   − = −

C PG PG PG

s t PG PG PL a

PG VV X

 (14)

 Equation (14) can be simplified as:
2 2

1 1 2

1 2 2

1 2

min 100(2 3)

. .

sin

C PG PG PG

s t PG PG PL a

PG 

 = + +

 + = =

 = −

 (15)

 The problem defined in (15) is equivalent to the problem
formulated below:

2 2

1 1 2

1 2 2

1 2

min 2 3

. .

sin

C PG PG PG

s t PG PG PL a

PG 

 = + +

 + = =

 = −

 (16)

 Apply Lagrange multipliers to (16). Here is:
2 2

2 2 2 2 2(sin) 2sin 3 (sin)PG PG a   = − − + − − + − (17)

 For simplicity, changing the notations of two variables

following u=PG2 and x=, (17) becomes (18):
2 2(sin) 2sin 3 (sin)x x u x u a= − − + − − + − (18)

 The local minimum of (18) is obtained by solving (19)
below with zero gradient of the objective function:

* * *
sin

 (2 2sin)cos 0

6






− + 
     

 = = − + + =        − 

T a u x
C C C

x x
x u

u

 (19)

 For the 2-bus system, we use both the standard Newton-
Raphson method and chord method to construct the DAG-NN.

1) Error analysis of DAG-NN on the 2-bus system

 By substituting (19) to (6d), h(y) and N(y) of the standard
Newton-Raphson method can be obtained, and a DAG of h(y)
for the 2-bus system is shown in Fig. 5. In the DAG, the nodes
representing simple functions are approximated by shallow
NNs, each of which is trained separately. A DAG-NN named
“1-DAG-NN” that approximates one Newton-Raphson
iteration is generated by substituting all these shallow NNs into
Fig. 2. Then another DAG-NN called “4-DAG-NN” is
constructed by integrating four 1-DAG-NNs in a series way,
which corresponds to four iterations in terms of the Newton-
Raphson method. The 4-DAG-NN is used for solving the AC
OPF of the 2-bus system here.

General node

Linear node

Layer 0

Layer 1

Layer 2 Layer 4

Layer 5

0,1
h

0,2
h

0,3
h

~

~x

~u

()2 2 − +

sin x

sin 2x

sin 3x

cos x

cos 2x

6 4u + −

2 8z z

3 66()z z−

4 11z z

10 6z z−

8 9z z−

1 2 3w w w+ +

5w

4 6 7w w w+ +

3~ h

2~ h

1~ h

a

a

~a

8 3 46 10z z z− − +

Layer 3

1,i iz h=

2,i iv h=
3,i is h= 4,i iw h=

1 1v s

2 1v s

3 1v s

4 1v s

6 1v s

7 1v s

8 1v s

51/ v

12 24 18a a− + −

4(6)a −

4 10a u+ −

3 4 2 4 2a a u u − + + −

22 4 −

1 12 4()z z z− +

5 78 4(3 1)z a z+ −

Figure 5. A DAG of function h(y) based on the Newton-Raphson method

 A dataset for the NN training and testing is generated by
solving the optimal power flow with the Newton-Raphson
method under different loading conditions within a variation of
30%. The error tolerance of the Newton-Raphson method is set
as 10-10, and solutions that can converge within 4 iterations are
picked to make up the dataset.

 In this case, the l∞-norm is used to measure the error. 𝜀𝑗 can

be obtained by calculating the l∞-norm of the test data error for

the 𝑗𝑡ℎ shallow NN; The Lipschitz constant L of N(y) is
determined by the expression of N(y); The Lipschitz constant

associated with the 𝑗𝑡ℎ node 𝐿𝑗
𝐡 defined in [17] can be

calculated according to the DAG shown in Fig. 5. According to
(12), the error upper bound of the 4-DAG-NN is:

4
13 10

7

1
() ()

1

71.4139 1
 4.372 10 1 10

71.4139 1

 1.6 10

K
NN

j j Nj

L
L e

L
  



− −

−

−
−  +

−

−
=   + 

−

= 

 h
y y

 (20)

 After training the 4-DAG-NN with the training dataset, the
AC OPF is predicted. All the predicted results are found to
satisfy the constraints and are feasible, and then the error is
calculated by comparing the results with true values. Finally,
the l∞-norm of test data error for the 4-DAG-NN is obtained as
1.02E-09, which is smaller than the error upper bound
calculated above. This validates that the DAG can be utilized to

design NNs, and the error upper bound can be calculated
according to (12).

2) DAG-NN performance of the 2-bus system

 To reduce the complexity of the DAG, a DAG-NN based
on the chord method instead of the standard Newton-Raphson
method is then constructed. In this case, three DAG-NNs are
constructed based on the chord method with different
repetitions of the DAG structure. Three traditional NNs with
the same number of neurons are also constructed for
comparison. Case 1 and case 4 have the same number of
neurons, and the same for case 2 and case 5, as well as case 3
and case 6. For this 2-bus system, one DAG structure consists
of 22 neurons, so a K-DAG has 22×K neurons. To avoid
influence of random factors, 100 NN models are trained with
different initial parameters for each case. The errors of the top
1, top 10, and top 50 results using different NNs are presented
in Table I. Table II shows the time costs for the 2-bus system.
As shown in Table I and Table II, all DAG-NNs have smaller
mean absolute errors and time costs than traditional NNs with
the same NN size. This corroborates the good performance of
the DAG-NN.

TABLE I. MEAN ABSOLUTE ERRORS OF THE COST FUNCTION

 Rank

 Case
Top 1 Top 10 Top 50

DAG-NNs

Case 1: 2-DAG-NN 1.08E-07 1.47E-06 2.18E-06

Case 2: 3-DAG-NN 1.01E-08 9.20E-08 1.48E-06

Case 3: 4-DAG-NN 7.59E-09 3.23E-08 3.21E-07

Traditional
NNs

Case 4: 2 hidden layers 2.63E-06 5.58E-06 2.74E-05

Case 5: 3 hidden layers 2.70E-06 3.45E-06 6.87E-06

Case 6: 4 hidden layers 1.33E-06 2.50E-06 5.31E-06

TABLE II. TIME COSTS FOR ONE TEST DATA OF THE 2-BUS SYSTEM

Case Time cost (ms)

DAG-NNs

Case 1: 2-DAG-NN 0.96

Case 2: 3-DAG-NN 1.89

Case 3: 4-DAG-NN 2.02

Traditional NNs

Case 4: 2 hidden layers 1.02

Case 5: 3 hidden layers 2.00

Case 6: 4 hidden layers 2.99

B. Case Study on a modified PJM 5-bus system

 A modified PJM 5-bus system is shown in Fig. 6.

5

G5

1
G1

4
G4

2 3
G3

Figure 6. A modified PJM 5-bus system

 A public dataset for learning AC OPF developed by NREL
using a toolbox named ‘Opf-learn’ is used here [19]. Fig. 7
shows the results of a 3-DAG-NN and a traditional NN of the
same size. In Fig. 7, errors of both the DAG-NN and the
traditional NN are due to violations of power flow equations or
inequality constraints. Therefore, a further correction step is
required to improve the accuracy and feasibility. As a common
practice, the predicted results provided by NNs are chosen as
warm start points to resolve the AC OPF problem by the
MATPOWER Interior Point Solver (MIPS). Starting from the
warm start points obtained by DC OPF, the DAG-NN and the

traditional NN, all the 3000 testing cases can converge to
accurate results, whose relative errors of the costs are within [-
0.0005%, 0.0005%]. Therefore, the DAG-NN can provide a
good initial guess for the AC OPF. Although DC OPF can also
provide a good initial point for the AC OPF, it is not as efficient
as the proposed NN which can be observed in Table III.
Because the DAG-NN is not a fully connected network, it has
a smaller number of parameters compared with the traditional
NN with the same number of neurons. It is expected to be more
efficient than the traditional one, but the result shown in Table
III is contrary to the expectation. One possible reason is that
although the DAG-NN accelerates due to a smaller number of
parameters, the customized construction of the DAG-NN is not
as efficient as the traditional one which can be easily
constructed from the package of PyTorch. From the case study,
the DAG-NN is very competitive with the traditional NN.
Moreover, the DAG-NN is promising in reducing the number
of neurons thanks to the utilization of structural information of
the problem. Its potential on larger cases will be tested in our
future work.

(a) Error of cost function (b) Relative error of cost function

Figure 7. The error of the cost function for different NNs

TABLE III. TIME COSTS FOR ONE TEST DATA OF THE 5-BUS SYSTEM

Case Time cost (ms)

DAG-NN 47.07

Traditional NN 45.34

DC OPF 61.28

IV. CONCLUSION

 This paper formulates the process of solving AC OPF by the
Newton-Raphson method as a compositional function, and the
compositional function is then represented by a DAG, which is
used to design and develop a NN. The error of the proposed
DAG-NN was analyzed. Also, the DAG-NN was tested on a 2-
bus system and a modified PJM 5-bus system. Case study results
validate that the proposed DAG-NN has roughly equal or better
performance than the traditional NN. Therefore, it is promising
to include the DAG structure to design NNs. Furthermore, this
approach also has good potential for other problems that can be
formulated as a compositional function, not limited to the AC
OPF discussed in this paper. The future work will focus on using
other approaches instead of the chord method to achieve a more
accurate DAG.

ACKNOWLEDGMENT

This manuscript has been authored by UT-Battelle, LLC
under Contract No. DE-AC05-00OR22725 with the U.S.
Department of Energy. The United States Government retains
and the publisher, by accepting the article for publication,
acknowledges that the United States Government retains a
nonexclusive, paidup, irrevocable, world-wide license to
publish or reproduce the published form of this manuscript, or

allow others to do so, for United States Government purposes.
The Department of Energy will provide public access to these
results of federally sponsored research in accordance with the
DOE Public Access Plan.

REFERENCES

[1] S. S. Torbaghan, Gowri Suryanarayana, et al., “Optimal flexibility
dispatch problem using second-order cone relaxation of AC power
flows,” IEEE Trans. Power Syst., vol. 35, no. 1, pp. 98-108, Jan. 2020.

[2] M. de Jong, G. Papaefthymiou, et al., “A framework for incorporation of
infeed uncertainty in power system risk-based security assessment,” IEEE
Trans. Power Syst., vol. 33, no. 1, pp. 613-621, Jan. 2018.

[3] V. Rostampour, O. t. Haar, T. Keviczky, “Distributed stochastic reserve
scheduling in ac power systems with uncertain generation,” IEEE Trans.
Power Syst., vol. 34, no. 2, pp. 1005-1020, March 2019.

[4] R. A. Jabr, “Radial distribution load flow using conic programming,”
IEEE Trans. Power Syst., vol. 21, no. 3, pp. 1458-1459, Aug. 2006.

[5] J. Lavaei, S. H. Low, “Zero duality gap in optimal power flow problem,”
IEEE Trans. Power Syst., vol. 27, no. 1, pp. 92-107, Feb. 2012.

[6] C. Coffrin, H. L. Hijazi, P. Van Hentenryck, “The QC relaxation: A
theoretical and computational study on optimal power flow,” IEEE Trans.
Power Syst., vol. 31, no. 4, pp. 3008-3018, July 2016.

[7] T. Senjyu, H. Takara, K. Uezato, T. Funabashi, “One-hour-ahead load
forecasting using neural network,” IEEE Trans. Power Syst., vol. 17, no.
1, pp. 113-118, Feb. 2002.

[8] Z. Zhang, R. Yao, S. Huang, Y. Chen, S. Mei, K. Sun, “An online search
method for representative risky fault chains based on reinforcement
learning and knowledge transfer,” IEEE Trans. Power Syst., vol.35, no.3,
pp.1856-1867, May 2020.

[9] A. Sepehr, O. Gomis-Bellmunt, E. Pouresmaeil, “Employing machine
learning for enhancing transient stability of power synchronization
control during fault conditions in weak grids,” IEEE Trans. Smart Grid,
vol.13, no.3, pp.2121-2131, May 2022.

[10] M. C. Passaro, A. P. A. da Silva, A. C. S. Lima, “Preventive control
stability via neural network sensitivity,” IEEE Trans. Power Syst., vol.
29, no. 6, pp. 2846-2853, Nov. 2014.

[11] R. R Hossain, Q. Huang, R. Huang, “Graph convolutional network based
topology embedded deep reinforcement learning for voltage stability
control,” IEEE Trans. Power Syst., vol. 36, no. 5, pp. 4848-4851, 2021.

[12] H. Hagmar, L. Tong, R. Eriksson, L. A. Tuan, “Voltage instability
prediction using a deep recurrent neural network,” IEEE Trans. Power
Syst., vol. 36, no. 1, pp. 17-27, 2020.

[13] R. Canyasse, G. Dalal, S. Mannor, “Supervised learning for optimal
power flow as a real-time proxy,” 2017 IEEE ISGT, pp. 1-5, 2017.

[14] K. Baker, “Learning warm-start points for ac optimal power flow,” 2019
IEEE 29th MLSP, pp. 1-6, 2019.

[15] X. Lei, Z. Yang, J. Yu, J. Zhao, Q. Gao, H. Yu, “Data-driven optimal
power flow: A physics-informed machine learning approach,” IEEE
Trans. Power Syst., vol. 36, no. 1, pp. 346-354, Jan. 2021.

[16] C. Chiu, J. Zhan, An evolutionary approach to compact DAG neural
network optimization, IEEE Access, vol. 7, pp. 178331-178341, Nov.
2019.

[17] W. Kang, Q. Gong, “Feedforward neural networks and compositional
functions with applications to dynamical systems,” SIAM Journal on
Control and Optimization, vol. 60, no. 2, pp. 786-813, Jan. 2021.

[18] V. S. Ryaben’kii, S. V. Tsynkov, “A theoretical introduction to numerical
analysis,” Chapman and Hall/CRC, Nov. 2006.

[19] T. Joswig-Jones, K. Baker, A. S. Zamzam, “Opf-learn: An open-source
framework for creating representative ac optimal power flow datasets,”
2022 IEEE ISGT, pp. 1-5, April 2022.

