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Abstract—Group imbalance has been a known problem in
empirical risk minimization (ERM), where the achieved high
average accuracy is accompanied by low accuracy in a minority
group. Despite algorithmic efforts to improve the minority group
accuracy, a theoretical generalization analysis of ERM on individ-
ual groups remains elusive. By formulating the group imbalance
problem with the Gaussian Mixture Model, this paper quantifies
the impact of individual groups on the sample complexity,
the convergence rate, and the average and group-level testing
performance. Although our theoretical framework is centered on
binary classification using a one-hidden-layer neural network,
to the best of our knowledge, we provide the first theoretical
analysis of the group-level generalization of ERM in addition
to the commonly studied average generalization performance.
Sample insights of our theoretical results include that when all
group-level co-variance is in the medium regime and all mean are
close to zero, the learning performance is most desirable in the
sense of a small sample complexity, a fast training rate, and a high
average and group-level testing accuracy. Moreover, we show that
increasing the fraction of the minority group in the training data
does not necessarily improve the generalization performance of
the minority group. Our theoretical results are validated on both
synthetic and empirical datasets, such as CelebA and CIFAR-10
in image classification.

Index Terms—Explainable machine learning, group imbalance,
generalization analysis, Gaussian mixture model

I. INTRODUCTION

Training neural networks with empirical risk minimization
(ERM) is a common practice to reduce the average loss of
a machine learning task evaluated on a dataset. However,
recent findings [1], [2], [3], [4], [5] have shown empirical
evidence about a critical challenge of ERM, known as group
imbalance, where a well-trained model that has high average
accuracy may have significant errors on the minority group that
infrequently appears in the data. Moreover, the group attributes
that determine the majority and minority groups are usually
hidden and unknown during the training. The training set can
be augmented by data augmentation methods [6] with varying
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performance, such as cropping and rotation [7], noise injection
[8], and generative adversarial network (GAN)-based methods
[9].

As ERM is a prominent method and enjoys great empirical
success, it is important to characterize the impact of ERM
on group imbalance theoretically. However, the technical dif-
ficulty of analyzing the nonconvex ERM problem of neural
networks results from the concatenation of nonlinear func-
tions across layers, and the existing generalization analyses
of ERM often require strong assumptions and focus on the
average performance of all data. For example, the neural
tangent kernel type of analysis [10], [11], [12], [13], [14],
[15], [16] linearizes the neural network around the random
initialization. The generalization results are independent of the
feature distribution and cannot be exploited to characterize the
impact of individual groups. Ref. [14] provides the sample
complexity analysis when the data comes from the mixtures
of well-separated distributions but still cannot characterize the
learning performance of individual groups. In another line of
works [17], [18], [19], [20], [21], [22], [23], [24], [25], people
make data assumptions that the labels are determined merely
by some input features and are irrelevant to other features or
model parameters. The generalization analysis characterizes
how the neurons learn important features. Our work follows
the line of works [26], [27], [28], [29], [30], where the
label of each data is generated by both the input distribution
and the ground-truth model so that group imbalance can be
characterized.

Contribution: To the best of our knowledge, this paper pro-
vides the first theoretical characterization of both the average
and group-level generalization of a one-hidden-layer neural
network trained by ERM on data generated from a mixture
of distributions. This paper considers the binary classification
problem with the cross entropy loss function, with training
data generated by a ground-truth neural network with known
architecture and unknown weights. The optimization problem
is challenging due to a high non-convexity from the multi-
neuron architecture and the non-linear sigmoid activation.

Assuming the features follow a Gaussian Mixture Model
(GMM), where samples of each group are generated from a
Gaussian distribution with an arbitrary mean vector and co-
variance matrix, this paper quantifies the impact of individual
groups on the sample complexity, the training convergence
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Fig. 1: Group imbalance experiment. (a) Binary classification
on CelebA dataset using Gaussian augmentation to control
the minority group co-variance. (b) Test accuracy against the
augmented noise level.

rate, and the average and group-level test error. The training
algorithm is the gradient descent following a tensor initializa-
tion and converges linearly. Our key results include

(1) Medium-range group-level co-variance enhances the
learning performance. When a group-level co-variance de-
viates from the medium regime, the learning performance
degrades in terms of higher sample complexity, slower con-
vergence in training, and worse average and group-level
generalization performance. As shown in Figure 1(a), we
introduce Gaussian augmentation to control the co-variance
level of the minority group in the CelebA dataset [31]. The
learned model achieves the highest test accuracy when the
co-variance is at the medium level, see Figure 1(b). Another
implication is that the diverse performance of different data
augmentation methods might partially result from the dif-
ferent group-level co-variance introduced by these methods.
Furthermore, although our setup does not directly model the
batch normalization approach [32] that modifies the mean and
variance in each layer to achieve fast and stable convergence,
our result provides a theoretical insight that co-variance indeed
affects the learning performance.

(2) Group-level mean shifts from zero hurt the learning
performance. When a group-level mean deviates from zero, the
sample complexity increases, the algorithm converges slower,
and both the average and group-level test error increases. Thus,
the learning performance is improved if each distribution is
zero-mean. This paper provides a similar theoretical insight
to practical tricks such as whitening [33], subgroup shift
[34], [35], population shift [36], [37] and the pre-processing
of making data zero-mean [38], that data mean affects the
learning performance.

(3) Increasing the fraction of the minority group in the
training data does not always improve its generalization
performance. The generalization performance is also affected
by the mean and co-variance of individual groups. In fact,
increasing the fraction of the minority group in the training
data can have a completely opposite impact in different
datasets.

II. BACKGROUND AND RELATED WORK

Improving the minority-group performance with known
group attributes. With known group attributes, distribution-
ally robust optimization (DRO) [4] minimizes the worst-group
training loss instead of solving ERM. DRO is more computa-
tionally expensive than ERM and does not always outperform
ERM in the minority-group test error. Spurious correlations
[3] can be viewed as one reason of group imbalance, where
strong associations between labels and irrelevant features exist
in training samples. Different from the approaches that address
spurious correlations, such as down-sampling the majority
[39], [40], up-weight the minority group [41], and removing
spurious features [42], [43], this paper does not require the
special model of spurious correlations and any group attribute
information.

Imbalance learning and long-tailed learning focus on
learning from imbalanced data with a long-tailed distribution,
which means that a few classes of the data make up the
majority of the dataset, while the majority of classes have
little data samples [44], [45], [46], [47], [48], [49], [50], [51],
[52]. Some works [45], [52] claimed that naively increasing
the number of the minority does not always improve the
generalization. Therefore, some recent works develop novel
oversampling and data augmentation methods [49], [48], [51]
that can promote the minority fraction by generating diverse
and context-rich minority data. However, there are very limited
theoretical explanations of how these techniques affect the
generalization.

Generalization performance with the standard Gaussian
input for one-hidden-layer neural networks. [53], [54], [55],
[56] consider infinite training samples. [26] characterize the
sample complexity of fully connected neural networks with
smooth activation functions. [57], [58], [30] extend to the non-
smooth ReLU activation for fully-connected and convolutional
neural networks, respectively. [28] analyzes the cross entropy
loss function for binary classification problems. [27] analyzes
the generalizability of graph neural networks for both regres-
sion and binary classification problems. One-hidden-layer case
of neural network pruning and self-training are also studied in
[59] and [29], respectively.

Theoretical characterization of learning performance
from other input distributions for one-hidden-layer neu-
ral networks. [60] analyzes the training loss with a single
Gaussian with an arbitrary co-variance. [61] quantifies the
SGD evolution trained on the Gaussian mixture model. When
the hidden layer only contains one neuron, [62] analyzes
rotationally invariant distributions. With an infinite number
of neurons and an infinite input dimension, [63] analyzes
the generalization error based on the mean-field analysis for
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distributions like Gaussian Mixture with the same mean. [64]
considers inputs with low-dimensional structures. No sample
complexity is provided in all these works.

Notations: Z is a matrix with Z; ; as the (¢, j)-th entry. 2 is
a vector with z; as the i-th entry. [K] denotes the set including
integers from 1 to K. I; and e; represent the identity matrix
in R4*? and the i-th standard basis vector, respectively. J;(Z)
denotes the i-th largest singular value of Z. The matrix norm
1]l = 6.(2). f(x) = Olg(x)) (or Qg(x)), O(g(x))) means
that f(z) increases at most, at least, or in the order of g(x),
respectively.

III. PROBLEM FORMULATION AND ALGORITHM

We consider the classification problem with an unbalanced
dataset using fully connected neural networks over n indepen-
dent training examples {(x;,v;)}, from a data distribution.
The learning algorithm is to minimize the empirical risk
function via gradient descent (GD). In what follows, we will
present the data model and neural network model considered
in this paper.

Data Model. Let x € R? and y € R denote the input
feature and label, respectively. We consider an unbalanced
dataset that consists of L (L > 2) groups of data, where
the feature @ in the group [ (I € [L]) is drawn from a
multi-variate Gaussian distribution with mean p; € R?, and
covariance X; € R?*?, Specifically, = follows the Gaussian
mixture model (GMM) [65], [66], [67], [68], denoted as x ~
ZzL:1 AN (g, 20)1. N\ € (0,1) is the probability of sampling
from distribution-/ and represents the expected fraction of
group-! data. ZzL:1 A; = 1. Group [ is defined as a minority
group if \; is less than 1/L. We use ¥ = {\;, uy, 3y, Vi}
to denote all parameters of the mixture model>. We consider
binary classification with label y generated by a ground-truth
neural network with unknown weights W* = [w], ..., w}] €
RI*K and sigmoid activation®. function ¢(z) = m,
where*

P(y = l|z) = H(W*, 2)

1 K
:?Zaw;%). (1)
j=1

Learning model. Learning is performed over a neural
network that has the same architecture as in (1), which is
a one-hidden-layer fully connected neural network® with its
weights denoted by W € R4*K_ Given n training samples

'We consider this data model inspired by existing works on group imbal-
ance and practical datasets. Details can be found in Appendix F.

2In practice, ¥ can be estimated by the EM algorithm [69] and the moment-
based method [66]. The EM algorithm returns model parameters within
Euclidean distance O(( 4 )%) when the number of mixture components L is
known. When L is unknown one usually over-specifies an estlma{e L>1L,
then the estimation error by the EM algorithm scales as O((n) ). Please
refer to [70], [71], [72] for details.

3The results can be generalized to any activation function ¢ with bounded
¢, ¢’ and ¢"', where ¢’ is even. Examples include tanh and erf.

4Our data model is reduced to logistic regression in the special case that
K = 1. We mainly study the more challenging case when K > 1, because
the learning problem becomes highly non-convex when there are multiple
neurons in the network.

5 All the weights in the second layer are assumed to be fixed to facilitate the
analysis. This is a standard assumption in theoretical generalization analysis
[57], [28], [27].

{z;, vy}, where x; follows the GMM model, and y; is from
(1), we aim to find the model weights via solving the empirical
risk minimization (ERM), where f,,(W) is the empirical risk,

min [, (W
WeRIX K

Zf (Wi, y:), 2)

where ¢(W; x;, y;) is the cross-entropy loss function, i.e.,
(Wi, y;) = — i - log(H(W, x;))
— (L —y;) - log(1 — HW,z;)).

Note that for any permutation matrix P, W P corresponds
permuting neurons of a network with weights W. Therefore,
HW,z) = HWP,z), and f,(WP) fn(W). The
estimation is considered successful if one finds any column
permutation of W*.

The average generalization performance of a learned model
W is evaluated by the average risk

f(W) = mwzl‘ (ul’El)z(W;miayi)a (4)

and the generalization performance on group [ is evaluated by
the group-/ risk

SIW) = B n (i, s EW s i, ). )

Training Algorithm. Our algorithm starts from an initial-
ization Wy € R?*X computed based on the tensor initializa-
tion method (Subroutine 1 in in Appendix) and then updates
the iterates W; using gradient descent with the step size®
no- The computational complexity of tensor initialization is
O(Knd). The per-iteration complexity of the gradient step is
O(Knd). We defer the details of Algorithm 1 in Appendix.

3)

Algorithm 1 Our ERM learning algorithm

1: Input: Training data {(:Bl,yl)}’z” 1> the step size ny =

O((Si Mlllulloo + 11 1))
iterations 7T’
2: Inmitialization: W, < Tensor initialization method via
Subroutine 1
3: Gradient Descent: for ¢ =01, T—1

Wi =W, — %Z(VZ(W,a:i7yi) + Vi)
=1
n (6)
= Wt Mo (vfn + ZVZ)

i=1

, the total number of

3\1—‘

4: Output: Wrp

IV. MAIN THEORETICAL RESULTS

We will formally present our main theory below, and the in-
sights are summarized in Section IV-A. For the convenience of
presentation, some quantities are defined here, and all of them

. 1
can be viewed as constant. Define oax = max;ez){[| 2|2 },
. —1—1
Omin = mine{[|E; 72} Let 7 = Omax/0min. We
assume 7 = O(1), indicating that 0. and oy, are in
6Algorithm 1 employs a constant step size. One can potentially speed up

the convergence, i.e., reduce v, by using a variable step size. We leave the
corresponding theoretical analysis for future work.
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the same order’. Let &;(W*) denote the i-th largest sin-
gular value of W*. Let Kk = 5 (WZ)  and define n =

o e ; Sic (W)
[Liz1 (0:(W?) /65 (WT)).

Theorem 1. There exist ¢y € (0, i) and positive value func-
tions B(¥) (sample complexity parameter), (V) (convergence
rate parameter), and &, (¥), E(V), &(V) (generalization
parameters) such that as long as the sample size n satisfies

n > ny = poly(eg ', k,n, 7, K, 51(W*))B(¥)dlog” d, (7)

we have that with probability at least 1 — d~'0, the iterates
(WY, returned by Algorithm 1 with step size 1y =

O((fy Ml + 12413927

a statistical error to a critical point W,, with the rate of
convergence v, ie.,

converge linearly with

W — Wyl <o(0)!||Wo — W, p
+ %\/dlflogn/m
— U

V(W) = 1 — K~%q(V),

®)

€))

where & > 0 is the upper bound of the entry-wise additive
noise in the gradient computation.
Moreover, there exists a permutation matrix P* such that

W = W*P*|| <E€,(¥) - poly(r, 0, 7.5:(W*))
0K (1+¢) - /dlogn/n).
The average population risk f and the group-1 risk f; satisfy
f_ SS(\P) ! poly(/i, T, 51(W*))

(10)

-@(K%(l+§)-\/d10gn/n) (b
Ji <&(W) - poly(k,n, 7,00 (W™))
(12)

-6(K¥(1+¢)- /dlogn/n)

The closed-form expressions of B, ¢, £,, £, and & are in
Section D of the supplementary material and skipped here. The
quantitative impact of the GMM model parameters ¥ on the
learning performance varies in different regimes and can be
derived from Theorem 1. The following corollary summarizes
the impact of ¥ on the learning performance in some sample
regimes.

Corollary 1. When we vary one parameter of group | for
any | € [L] of the GMM model ¥ and fix all the others, the
learning performance degrades in the sense that the sample
complexity ns., the convergence rate v, |W,,—W*P||, aver-
age risk f and group-l risk f; all increase (details summarized
in Table I), as long as any of the following conditions happens,

(i) ||X:|| approaches 0;  (ii) ||%;|| increases from some
constant;  (iii) ||| increases from 0,

(iv) N decreases, provided that |%,|| = o2, i.e., group
has the smallest group-level co-variance, where ||3;|| are all
constants, and ||p;|| = || ] for all i,j € [L].

"Note that it is a very mild assumption that oy, is not very close to zero,
or equivalently, 7 = ©(1). We verify this in Appendix G.

4

(v) \; increases, provided that | 3| = o2, i.e., group
has the largest group-level co-variance, where ||X;|| are all
constants, and ||p;|| = ||p;| for all i,j € [L].

To the best of our knowledge, Theorem 1 provides the
first characterization of the sample complexity, learning rate,
and generalization performance under the Gaussian mixture
model. It also firstly characterizes the per-group generalization
performance in addition to the average generalization.

A. Theoretical Insights

We summarize the crucial implications of Theorem 1 and
Corollary 1 as follows.

(P1). Training convergence and generalization guaran-
tee. The iterates W, converge to a critical point W), linearly,
and the distance between W,, and W*P* is O( /dlogn/n)
for a certain permutation matrix P*. When the computed
gradients contain noise, there is an additional error term of
O(&+/dlogn/n), where £ is the noise level (£ = 0 for noise-
less case). Moreover, the average risk of all groups and the
risk of each individual group are both O((1+¢&)+/dlogn/n).

(P2). Sample complexity. For a given GMM, the sample
complexity is @(dlog2 d), where d is the feature dimension.
This result is in the same order as the sample complexity
for the standard Gaussian input in [28] and [26]. Our bound
is almost order-wise optimal with respect to d because the
degree of freedom is dK. The additional multiplier of log® d
results from the concentration bound in the proof technique.
We focus on the dependence on the feature dimension d and
treat the network width K as constant. The sample complexity
in [28] and [26] is also d - poly(K, logd).

(P3). Learning performance is improved at a medium
regime of group-level co-variance. On the one hand, when
[I3]] is ©(1), the learning performance degrades as |||
increases in the sense that the sample complexity ns., the
convergence rate v, the estimation error of W*, the average
risk f, and the group- risk f; all increase. This is due to the
saturation of the loss and gradient when the samples have a
large magnitude. On the other hand, when [|3;] is o(1), the
learning performance also degrades when ||X;|| approaches
zero. The intuition is that in this regime, the input data are
concentrated on a few vectors, and the optimization problem
does not have a benign landscape.

(P4). Increasing the fraction of the minority group
data does not always improve the generalization, while
the performance also depends on the mean and co-variance
of individual groups. Take ||X;|| = ©(1) for all group j, and
[le;1 is the same for all j as an example (columns 5 and
6 of Table I). When || X;]| is the smallest among all groups,
increasing )\; improves the learning performance. When |||
is the largest among all groups, increasing A; actually degrades
the performance. The intuition is that from (P3), the learning
performance is enhanced at a medium regime of group-level
co-variance. Thus, increasing the fraction of a group with a
medium level of co-variance improves the performance, while

Tpoly([|pall) is [l l|* for [|pall < 15 [[pa[l*? for [l > 1.
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TABLE I: Impact of GMM parameters on the learning performance in sample regimes

3, changes A; changes, constant ||33;||’s, equal ||te;|’s
p; changes - :

2] = o(1) 2] = (1) if |2l = of | i 1%l = 0fax

B(W), sample complexity nsc | O] ~?) OlI=1?) Opoly(llu))* | O(gr5se) 0(1) - 575
convergence rate v(¥) o< —q(¥) | 1 —O(||Z;]|3) 17@(m) 17@(m) @(ﬁ) 1*9(%)
(D), |Wy — W*P|p o) —e(=lP) | o(/I=:d) O(1 + [lpull) O(H\l/fz) O+ VX))
E(W), average risk | o —e(IIP) | o(isul) o +lml?) | Ot o) - 24
£1(W), group- risk Ji o —e(IIP) | o(isul) Ol +ml?) | 0o 01 + V)

increasing the fraction of a group with large co-variance de-
grades the learning performance. Similarly, when augmenting
the training data, an argumentation method that introduces
medium variance could improve the learning performance,
while an argumentation method that introduces a significant
level of variance could hurt the learning performance.

(P5). Group-level mean shifts from zero degrade the
learning performance. The learning performance degrades as
|[£e1]] increases. An intuitive explanation of the degradation is
that some training samples have a significant large magnitude
such that the sigmoid function saturates.

B. Proof Idea and Technical Novelty

1) Proof Idea: Different from the analysis of logistic re-
gression for generalized linear models, our paper deals with
more technical challenges of nonconvex optimization due to
the multi-neuron architecture, the GMM model, and a more
complicated activation and loss. The establishment of Theorem
1 consists of three key lemmas.

Lemma 1. (informal version) As long as the number of
training samples is larger than Q(dK® log? d), the empirical
risk function is strongly convex in the neighborhood of W*
(or a permutation of W*). The size of the convex region is
characterized by the Gaussian mixture distribution.

The main proof idea of Lemma 1 is to show that the
nonconvex empirical risk f, (W) in a small neighborhood
around W* (or any permutation W*P) is almost convex
with a sufficiently large n. The difficulty is to find a positive
lower bound of the smallest singular value of V2 f(W), which
should also be a function of the GMM. Then, we can obtain
V2 £, (W) from V2f(W) by concentration inequalities.

Lemma 2. (informal version) If initialized in the convex
region, the gradient descent algorithm converges linearly to a
critical point W,,, which is close to W* (or any permutation
of W*), and the distance is diminishing as the number of
training samples increases.

Given the locally strong convexity, Lemma 2 provides the
linear convergence to a critical point. The convergence rate is
determined by the GMM.

Lemma 3. (informal version) Tensor Initialization Method
initializes Wy € R¥™X around W* (or a permutation of
W*).

The idea of tensor initialization is to first find quantities
(see @Q; in Definition 1) in the supplementary material) which
are proven to be functions of tensors of w}. Then the method
approximates these quantities numerically using training sam-
ples and then applies the tensor decomposition method on the
estimated quantities to obtain Wy, which is an estimation of
wr.

Combining the above three lemmas together, one can derive
the required sample complexity and the upper bound of f
and ﬁ in (7), (11), and (12), respectively. The idea is first
to compute the sample complexity bound such that the tensor
initialization method initializes Wy, in the local convex region
by Lemma 3. Then the final sample complexity is obtained by
comparing two sample complexities from Lemma 1 and 3.

By further looking into the order of the terms B(¥), v(¥),
E(P), E,(P), and &(V) in several cases of ¥, Theorem
1 leads to Corollary 1. To be more specific, we only vary
parameters 3;, or py;, or ); following the cases in Table I,
while fixing all other parameters of W. We apply the Taylor
expansion to approximate the terms and derive error bounds
with the Lipschitz smoothness of the loss function.

2) Technical Novelty: Our algorithmic and analytical
framework is built upon some recent works on the general-
ization analysis of one-hidden-layer neural networks, see, e.g.,
[26], [57], [28], [27], [59], which assume that ax; follows the
standard Gaussian distribution and cannot be directly extended
to GMM. This paper makes new technical contributions from
the following aspects.

First, we characterize the local convex region near W*
for the GMM model. To be more specific, we explicitly
characterize the positive lower bound of the smallest singular
value of V2f(W) with respect to W, while existing results
either only hold for standard Gaussian data [26], [28], [59],
[29], or can only show V2 f(W) is positive definite regardless
the impact of ¥ [10].

Second, new tools, including matrix concentration
bounds are developed to explicitly quantify the impact of
U on the sample complexity.

Third, we investigate and provide the order of the bound
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for sample complexity, convergence rate, generalization
error, average risk, and group-!/ risk in terms of ¥ for the
first time in the line of research of model estimation [26],
[28], [27], [59], [29], which is also a novel result for the case
of Gaussian inputs.

Fourth, we design and analyze new tensors for the
mixture model to initialize properly, while the previous
tensor methods in [26], [57], [28], [27] utilize the rotation
invariant property that only holds for zero mean Gaussian.

V. NUMERICAL EXPERIMENTS
A. Experiments on Synthetic datasets

We first verify the theoretical bounds in Theorem 1 on
synthetic data. Each entry of W* € R?¥K is generated from
N(0,1). The training data {x;,y;}, is generated using the
GMM model and (1). If not otherwise specified, L = 2,
d =5, and K = 3°. To reduce the computational time, we
randomly initialize near W* instead of computing the tensor
initialization'”.

Sample complexity. We first study the impact of d on the
sample complexity. Let g1 = 1 in R? and let py = 0. Let
¥, = 3, = I él\ = Ay = 0.5. We randomly initialize
M times and let Wém) denote the output of Algorithm 1
in the mth trail. Let W, denote the mean values of all

W™ and let Vi = \/Zm L ||@m — W, ||2/M denote the
variance. An experiment is successful if Viyy < 1073 and
fails otherwise. M is set to 20. For each pair of d and n,
20 independent sets of W* and the corresponding training
samples are generated. Figure 2 shows the success rate of
these independent experiments. A black block means that
all the experiments fail. A white block means that they all
succeed. The sample complexity is indeed almost linear in d,
as predicted by (7).

21K

14K

7K

Number of Samples

20 40 60 80 100
Dimension of data

Fig. 2: The sample complexity when the feature dimension
changes

We next study the impact on the sample complexity of
the GMM model. In Figure 3 (a), 37 = 39 = I, and let
p1 = p-1, po = —1. ||py]| varies from O to 5. Figure 3(a)

9Like [26], [57], [28], we consider a small-sized network in synthetic
experiments to reduce the computational time, especially for computing the
sample complexity in Figure 3. Our results hold for large networks too.

10The existing methods based on tensor initialization all use random
initialization in synthetic experiments to reduce the computational time. See
[28], [571, [27], [29] as examples. We compare tensor initialization and local
random initialization numerically in Section B of the supplementary material
and show that they have the same performance.

% 20K 4 20K
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s,
@

[121]]

Fig. 3: The sample complexity (a) when one mean changes,
(b) when one co-variance changes.

shows that when the mean increases, the sample complexity
increases. In Figure 3 (b), we fix pu; = 1, pus = —1, and
let ¥, = 021 and 35 = I. ¢ varies from 107! to 10'. The
sample complexity increases both when ||X]| increases and
when ||2 || approaches zero. All results match predictions in
Corollary 1.

Convergence analysis. We next study the convergence
rate of Algorithm 1. Figure 4(a) shows the impact of ||p,]|.
A1 =X =05, uy = —pg = C -1 for a positive C, and
3, = ¥y = ATDA. Here A is generated by computing the
left-singular vectors of a d x d random matrix from the Gaus-
sian distribution. D = diag(1,1.1,1.2,1.3,1.4). n = 1 x 10%,
Algorithm 1 always converges linearly when ||p1]| changes.
Moreover, as ||p1]| increases, Algorithm 1 converges slower.
Figure 4 (b) shows the impact of the variance of the Gaussian
mixture model. \y = XAy = 05, g = 1, puo = —1,
3 =3, =X =02-ATDA. n = 5 x 10*. We change
||IX]| by changing o. Among the values we test, Algorithm 1
converges fastest when || X|| = 1. The convergence rate slows
down when ||3|| increases or decreases from 1. All results are
consistent with the predictions in Corollary 1. We then study
the impact of K on the convergence rate. A\; = Ao = 0.5,
p1 =1, po = —1, 31 = ¥y = I. Figure 5 (a) shows that,
as predicted by (9), the convergence rate is linear in —1/K?2.

10()}
s
= (=]
5 "\"%&o [l =0 |
Z 10~ m‘ss @ ||| = 0.5
% %0 © |mll=1
~ H/u\l =15
[l = 2
10 |
Number of 1terat10ns <104
(@)
10° gz i ]
. A A - .
E Ba.
o 5 g Ba - =05
Z 10 SEEE g -o- =07
= a _
< %o |, © =1
e~ ©e a =15
10 —%a -
1 2 3

Number of iterations , 104

(b)

Fig. 4: (a) The convergence rate with different p1. (b) The
convergence rate with different 3. (c) Convergence rate when
the number of neurons K changes.
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Average and group-level generalization performance.
The distance between W), returned by Algorithm 1 and W*
is measured by ||W,, — W*||r. n ranges from 2 x 103 to
6 x 10*. ¥, = 3y = 9I, puy = 1, puy = —1. Each point in
Figure 5 (b) is averaged over 20 experiments of different W*
and training set. The error is indeed linear in 1/log(n)/n, as
predicted by (8).

1 ‘ 0.03
L o
s =
2 0.998 | £ 0.02
Q =
£,0.996 |
2 (& 001
% 0.994 =
0
0.992 0.02 0.04 0.06
0 0.1 0.2

1/K? o
(@) (b)

n

Fig. 5: (a) Convergence rate when the number of neurons K
changes. (b) The relative error of the learned model when n
changes.

We evaluate the impact of one mean/co-variance of the
minority group on the generalization. n = 2 x 10%. Let
A1 =08, Ay =02, uy = 2-1, 3y = I. First, we let
po = (e —2) -1 and ¥y = I. Figure 6 (b) shows that both
the average risk and the group-2 risk increase as po increases,
consistent with (P5). Then we set o = —2-1, ¥y = 03 - I.
Figure 6 (a) indicates that both the average and the group-2
risk will first decrease and then increase as ||X||2 increases,
consistent with (P3).

5
0 5“ ‘ 0.6 —¥-Minority-group risk
) "\ -~ ~B- Average risk »

2 s 2ol 2 0.6 d
204 -# Minority-group risk g -
7 =, -O- Average risk = ' i
=03 a, H" ﬁ 0 557/ u.a-.
B|., & _g--@--a--a
=-n o -
0.2 LR 05
107! 10° 10' ~o 2 4
D22 [l £e21]

(a)

Fig. 6: (a) The cross-entropy test loss when the co-variance
of the minority group changes. (b) The cross-entropy test loss
when the mean of the minority group changes.

Next, we study the impact of increasing the fraction of the
minority group. g1 = po = 0. Let group 2 be the minority
group. In Figure 7 (a), ¥; = 10 - I and X, = I, the
minority group has a smaller level of co-variance. Then when
Ao increases from O to 0.5, both the average and group-2 risk
decease. In Figure 7 (b), 37 = I and 35 = 10 - I, and the
minority group has a higher-level of co-variance. Then when
A2 increases from O to 0.3, both the average and group-2 risk
increase. As predicted by insight (P4), increasing Ao does not
necessarily improve the generalization of group 2.

B. Image classification on dataset CelebA

We choose the attribute “blonde hair” as the binary classifi-
cation label. ResNet 9 [73] is selected to be the learning model

0.45 =#= Minority-group risk
2 *.\.~.’-- =3~ Average risk
i 0A4ﬁ.. '.--—‘\.*-_

5] .
= ‘B-...
035 ﬂ'""ﬂ-----n....n...-'z
0 0.1 0.2 0.3
)\2
(a)

0 PSR TR - Tin S
2 Sg----a Minority-group risk
= == Average risk
204 |
H

0.3

0.1 0.2 0.3
)\2
(b)

Fig. 7: The test loss (cross entropy loss) of synthetic data
with different Ay values. (a) Group 2 has a smaller level of
co-variance. (b) Group 2 has a larger level of co-variance.

here because it was applied in many simple computer vision
tasks [74], [75]. To study the impact of co-variance, we pick
4000 female (majority) and 1000 male (minority) images and
implement Gaussian data augmentation to create additional
300 images for the male group. Specifically, we select 300
out of 1000 male images and add i.i.d. noise drawn from
N(0,0?) to every entry. The test set includes 500 male and
500 female images. Figure 1 shows that when 62 increases,
i.e., when the co-variance of the minority group increases, both
the minority-group and average test accuracy increase first and
then decrease, coinciding with our insight (P3).

Then we fix the total number of training data to be 5000
and vary the fractions of the two groups. From Figure 8(a)'!
and (b), we observe opposite trends if we increase the fraction
of the minority group in the training data with the male being
the minority and the female being the minority. The norm of
covariance of the male and female group in the feature space is
5.1833 and 4.9716, respectively. This is consistent with Insight
(P4). Due to space limit, our results on the CIFAR10 dataset
are deferred to Section A in the supplementary material.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

This paper provides a novel theoretical framework for
characterizing neural network generalization with group imbal-
ance. The group imbalance is formulated using the Gaussian
mixture model. This paper explicitly quantifies the impact of
each group on the sample complexity, convergence rate, and
the average and the group-level generalization. The learning
performance is enhanced when the group-level covariance is
at a medium regime, and the group-level mean is close to zero.
Moreover, increasing the fraction of minority group does not
guarantee improved group-level generalization.

Tn Figure 8(a), when the minority fraction is less than 0.01, the minority
group distribution is almost removed from the Gaussian mixture model. Then
the O(1) constants in the last column of Table I have some minor changes,
and the order-wise analyses do not reflect the minor fluctuations in this regime.
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Fig. 8: The test accuracy on CelebA dataset has opposite trends
when the minority group fraction increases. (a) Male group is
the minority (b) Female group is the minority

One future direction is to extend the analysis to multiple-
hidden-layer neural networks and multi-class classification.
Because of the concatenation of nonlinear activation functions,
the analysis of the landscape of the empirical risk and the de-
sign of a proper initialization is more challenging and requires
the development of new tools. Another future direction is to
analyze other robust training methods, such as DRO. We see
no ethical or immediate negative societal consequence of our
work.

APPENDIX
A. Definitions
Definition 1. (p-function). Let z ~ N (u,I;) € R% Define

04 (i,,0) = B[00 - 2)21] and 5, (i) =
IEZZNN(WU[(;S (0-2)z1], ¥V q € {0,1,2}, where z; and w; is
the i-th entry of z and wu, respectively. Define p(u, o) as

p(u,a) i, EI?dl]njqé {( 1)(60(2-711’70-) - ao(i,u,a)Q),
. )2
i) - 250

13)

Definition 2. (D-function). Given the Gaussian Mixture Model
and any positive integer m, define D,, (V) as

[l

eyl i DI
1=

Dy (T) = A (14)
=1

p-function is defined to compute the lower bound of the

Hessian of the population risk with Gaussian input. D-function

is a normalized parameter for the means and variances. It is

lower bounded by 1. D-function is an increasing function of

|[£e;]| and a decreasing function of o;.

B. Proof of Lemma 1

We first restate the formal version of Lemma 1 in the
following.

Lemma 1. (Strongly local convexity) Consider the classifica-
tion model with FCN (1) and the sigmoid activation function.
There exists a constant C' such that as long as the sample size

L
_ 11122
n>Cie? - (3 Nl + I1ZF1)?)
=1
'(Z 1= o W (15)
0 KR T s (W2 R

* C—i\\ "2 n 2
S (WHIEH ™) dK® log” d

for some constant C1 > 0, ¢g € (0, i) and any fixed permu-
tation matrix P € RE*E yve have for all W € B(W*P,r),

L —1-1 * 1
1—2¢ 13l W™
Q A )
( K2 ; LK s? p(5K(W*)H2f1||*%
S (WIEH) - Lux (16)
L
1
V(W) = Co > Mllfulloe + 1B21D)? - Taxc
=1

with probability at least 1 — d=1° for some constant Cy > 0.

1) Useful lemmas: Lemmas 4, 5, 6, 7, and 8 are required
for the proof.

Lemma 4.
k
B et + AN ety (DT @ 90 2]
i=1
> p(p,0)||R]|%,
where  p(p,0) is defined in Definition 1 and

Rdxk

R=(ry,---,r) € is an arbitrary matrix.

Lemma 5. With the FCN model (1) and the Gaussian Mixture
Model, for any permutation matrix P, for some constant
C12 > 0, we have we have

sup [[VUW, @)

E, st {
e~ N (2 W AW CB(W* P,r)

— VW 2)||/|[W — Wl

L
3.5
Sd2 K> Z/\l oo + [124]])? Z/\I(HHIHOO + 121
1=1 1=1
(18)
Lemma 6. (Hessian smoothness of population loss) In the

FCN model (1), for any permutation matrix P, we have

IV2F(W) = V2f(W*P)|| SK* - ||W - W*P||

L L 1
1 1 1
(S Al + 1D Ml + 17 1)°)
=1 =1

19)
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Lemma 7. (Local strong convexity of population loss) In the
FCN model (1), for any permutation matrix P, if ||W —

W*P||p <r foran ¢ € (0, }), then,
L 1 1 * T
1—60 1=, 1~ W'
Lo (W
2 i,
L
=) - Lae = VP Z (lhall + 2)° - Lix
- (20)

Lemma 8. In the FCN model (1), for any permutation matrix
P, as long as n > C'-dK log dK for some constant C' > 0,
we have

sup ||V fo (W) = V2 F(W)]]
WEB(W*P,r)

L
i dK logn
<D Ml + 17 )2 =25

=1

21

with probability at least 1 — d—1°.

We next show the proof of Lemma 1.
2) Proof: From Lemma 7 and 8, with probability at least
1—d1o,

By (20) and (21), we can also derive the upper bound as
follows,

V2L W)  IV2F W) + [V (W) = V2F(W)|

L
1
SO Al + 12711

1=1

1 dK logn

+ > Nl + IIZE1D?y —
1=1
L

1
SO Al + 1= 1)
=1

(26)
Combining (25) and (26), we have
( 2602 1=t o W,
TR e (W37
ok (W)=} 1\\")) I LV (W) @7)

~

=2 A

(lfilloo + 1217 -
with probability at least 1 — d—10.

C. Proof of Lemma 2

We restate the formal version of Lemma 2 in the following.

Lemma 2. (Linear convergence of gradient descent) Assume

V(W) = V2 F(W) — |[V2F(W) = V2 £, (W)|| - T
(1—c0) o=, 1= W*Tuz
iQ( o2 lzzl)\z g 9(6 WS-

o (WHIEH) 1

L . dK logn
—0(Co- Y Ml + 157 )3 =27 -1

=1
(22)
As long as the sample complexity is set to satisfy
L 1)—1
1., [dKlogn _ € ||E -
ZAZ(HMHJF”Elz”) N T < K2 W
=1 =1
W*Tﬂl * -1 -1
e s (W) T
S (W13, 7|2
(23)
ie.,
L ) )
nze” (O Nl + 122 1)?)
1=1
L —1y— *
1= W (24)
: Z/\l 7,3 P 11>
=1 ek k(W% 72

1 -2
Sk (WIS T) "k log? d

for some constant C; > 0, then we have the lower bound of
the Hessian with probability at least 1 — d—10.

L
1—2e¢
V2 f, (W) = 9(7[(2 P
=1

W*TH . L
kWIS T
e (W) |2~

1=

TKHQ
! (25)

p(

3 the conditions in Lemma 1 hold. Given any fixed permutation
matrix P € REXE if the local convexity of B(W*P,r)
holds, there exists a critical point in B(W*P,r) for some
constant C3 > 0, and ¢y € (0, %), such that

|W,, — W*P||
5 1
KEVSE Ml + [S2)20+ €) - /dlog
~ L =, )1 WT W —1)_1
A L 1) b
Zl:l TR w2 (5K(W*)H2 ”_;7 K( )H l H 2)
(28)

If the initial point Wy € B(W*P,r), the gradient descent
linearly converges to W, i.e.,

[|W, —

L x|t « 11
Q(Zl_l ZL!]Té(Hll p(5 (in/)HEple*l’(sK(W )HEI 1” é) )t

1
K23 Ml + 1122 1)2

with probability at least 1 — d—10.

Wollr < [Wo = Wl - (1-

(29)

1) A useful lemma:

Lemma 9. If r is defined in (139) for ¢y € (0,
probability at least 1 — d—1°, we have'?

IV fu(W) = V(W)

%), then with

sup
WEeB(W*P,r)

< dl
Sy K Nl + 12)2 /=22 (1 + )

=1

(30)

129 £,,(W) is defined as % S L (VU(W x4, y;) + v;) in algorithm 1
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, where P is a permutation matrix.

We next show the proof of Lemma 2.

2) Proof: Following the proof og\ Theorem 2 in [28], first,
we have Taylor’s expansion of f,(W,,)

f’n(Wn) =fn(W*P) + <an(W*P), VCC(W,L - W*P)>

+%vec(ﬁ\7n — W*P)V2f,(W')vec(W, — W*P)

€29

Here W' is on the straight line connecting W* P and ﬁ\/n
By the fact that f,(W,,) < f,(W*P), we have

%Vec(ﬁ\/n - W*P)Van(W’)Vec(Wn - W*P) a2
S‘an(W*P)Tvec(ﬁ\/n —W*P)

From Lemma 7 and Lemma 9, we have

Z IS W T
e A T PSRl R
1 (33)

5K(W*)||Ez =)W - WP
1 _
§§Vec(Wn —W*P)V2f,(W')vec(W,, - W*P)

and

Vo (W*P) T vec(W, — W*P)
<[V (WP [ W = WP
S(IVi(W*P) = V(W' P)| + V(W P)]|)
|W,, — W*P||

L
<O(\[ K Ml + 1212/ T (1 4-))

=1

(34)

|W,, — W*P||r

The second to last step of (34) comes from the triangle inequal-
ity, and the last step follows from the fact Vf(W*P) = 0.
Combining (32), (33) and (34), we have

|W,, — W*P||

K3SE Ml + 1SF )20 +€) - /dlogn/n

~ L = - W*T W 11
)\ 1 75 2 2
D proms g p(5K(W*)H2_1||77 k(WHIIZ,7]72)
(35)

Therefore, we have concluded that there indeed exists a critical
point W in B(W* P, r). Then we show the linear convergence
of Algorithm 1 as below. By the update rule, we have

—

Wt+1 - Wr

=W; — van( n))

’\ _To Zyl

3

1 n
nO(an Wt + — Z:l/Z
i=1

(1w [ VRvE)) - W

. (36)
where W (y) = YW,, + (1 — v)W, for v € (0,1). Since
W(y) € ]B(W P,r), by Lemma 1, we have
min I j v2fn( ( )) < Hmax I (37)
- _of 1L L =7 w*T
where Hmln = Q(Kz Zl:l nTE 2 P( (W*)HE,’I\I*% )
" 11
Sk(WH)|I= 12 ) Hinax Y /\z(HuzII + (=)
Therefore,
Wit — Wallp

1
:I\I*no/o V2L (W) - [We — Wl + |2 anF

n

X7 Mo
<(1 — noHwin)||Wi — Wyl||F + HZ ZWHF

i=1
(38)
i -1 _ 1 .
By setting o = 7 — = O(Zlil z\z(\lml\+\l21\|)2)’ we obtain
X7 e Hmin
[Wip1 —Willp < (1—m)||Wt Wallp+ 2 ZH%HF
(39)

Therefore, Algorithm 1 converges linearly to the local mini-
mizer with an extra statistical error.
By Hoeftding’s inequality in [76] and Property 2, we have

( ZHVZHF \/ms) < exp(~ LU logn

axe )
<d~ 10

(40)
d=19 we can derive

Hmaxn() / dK lognf
Hmin n

(41)

Therefore, with probability 1 —
||Wt - WnHF

Hmin
<(1 - min
Hrnax

Y [Wo — Wal|r +

D. Proof of Lemma 3

We first restate the formal version of Lemma 3 in the
following.

Lemma 3. (Tensor initialization) For classification model,
with Dg(V) defined in Definition 2, we have that if the sample
size

n > KEK4T12Dg (W) - dlog® d, (42)
then the output Wy € R4&*K satisfies
dl
|Wo—W*P*|| < k5K3.79/Dg(0) ) 22 1wH|| 43)
n

with probability at least 1—n—20D for a specific permutation
matrix P* € REXE,
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1) Useful lemmas: Lemmas 10, 11, 12, 13, and 14 are
needed to prove Lemma 3.

Lemma 10. Let Q5 and Q3 follow Definition 3. Let S be
a set of i.id. samples generated from the mixed Gaussian
distribution ZZL L AN (pr, Xy). Let Qa, Q3 be the empirical
version of Q2, Q3 using data set S, respectzvely Then with a
probability at least 1 — 2n~ 01 (W” ) 9 we have

~ dlogn
1Q2=Qul| S /2061 (W2 1"

if the mixed Gaussian distribution is not symmetric. We also
have

Do (W) D4 (V) (44)

||Q3(Id7 Id7 a) - Q3(Ida Id7 a)”

[dl
S ogn . 51(W*)2 . 7_6
n

for any arbitrary vector o« € RY, if the mixed Gaussian
distribution is symmetric.

(45)

Dy (W) Dy(V)

Lemma 11. Let U € E4XK be the orthogonal column span
of W*. Let o be a fixed unit vector and U € RI*E denote
an orthogonal matrix satisfying |[UUT —UU "|| < 1. Define

Q3(U U U) where Q3 is defined in Definition 3. Let
R3 be the empirical version of Rs using data set S, where
each sample of S is i.i.d. sampled from the mixed Gaussian
distribution Zl L NN (, Xy). Then with a probability at

least 1 — n~ " (W~ ), we have

_ 1
|Rs — Ry|| S 6,(W™)? - (/D () - 1/ Oi” (46)

Lemma 12. Let Ql be the empirical version of Q1 using
dataset S. Then with a probability at least 1 — 2n~HD e

have
~ dl
101 = Qull 5 (VDa(W)) - || =22

Lemma 13. (/26], Lemma E.6) Let Q2, Q3 be defined in
Definition 3 and Qs, Q3 be their empirical version, respec-
tively. Let U € R¥K be the column span of W*. Assume
1Q2 — Qa| < 2 Q2 for non-symmetric distribution cases
and Q5T T, ) — Qs(Is, Ip,ao)|| < \@Uadsa)
symmetric distribution cases and any arbitrary vector a € R4
Then after T = O(log(1)) iterations, the output of the Tensor
Initialization Method 1, U will satisfy

(47)

vUT —vuuT <M+7 48
I IS re Gy
which implies
[- 00w < (192 Qall | o)1 49
I will S (gt +alwill @)

if the mixed Gaussian distribution is not symmetric. Similarly,
we have
PpS Qs(1a, I, 00) — Qs(I4, 1, )|
UUT _ UUT < ||Q3( dyLd, ) ) + €
|| H ~ 5K(Q3(IdaIdaa))
(50)

which implies
(I =TT Y|
<(|‘Q3(IdaIdaa)_Q3(IdaId7a)H +6)||’LU*H D
~ Or(Q3(1g, 14, cx)) ’

if the mixed Gaussian distribution is symmetric.

Lemma 14. (/26], Lemma E.13) Let U € R be the
orthogonal column span of W*. Let U € R¥K pe an
orthogonal matrix such that ||[UUT —UU || <y < f#i/f'
For each i € [K]|, let v; denote the vector satisfying
[lo; — ﬁTwi*H < v < K21K. Let Q be defined
in Lemma 12 and @1 be

Q1 — Q1| < 3]|Q1]| S

its empirical version. If

111Qull,

3 1 *
< (K'K2 (71 +72) + K2 K 273)||w] ]|

;)| - @ (52)

We next show the proof of Lemma 3.
2) Proof: : By the triangle inequality, we have

||wj

— ;U
= w0} — 1w 109 + [|w; 1105; — 05|

<||w; ~ 11wy 11T%;

+ ||Ilw; 10%; - ,0%;

<Jlw; | [w;* - O,

+ ||l 1] - &

(53)

5;" —UU w; +UU w;" — ﬁﬁjH

)
From Lemma 10, Lemma 13, 6x(Q2) < 0%(W*) and
Sr(Q3(I4, Iy, ) < 6% (W) for any arbitrary vector a €

R?, we have

ij*fUUTu?

+ |l = & | 1©75;1

g(sl(w*)(Husj* — U0 w;*

|l - |

J
0 dl 51 (W*)?2
<HC§;(Q?)2H < W 6;((W*))2 75/ D (W) Da (V)
dlogn 2 26, /Dy (W) Da(T)
" . 2( ) 4( )
(54)

if the mixed Gaussian distribution is not symmetric, and

H UT — * < ||Q3(Id7Id7a) - QS(Id7Id7a)H
~ 5K(Q3(Id71d7a))
dlogn 2 26, /Dy(%)Da(W)

n

(55
if the mixed Gaussian distribution is symmetric. Moreover, we
have

K3 ~ K3logn
SWHRS — R3|| £ k% (1% Dg(W)) - V —

(56)
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in which the first step is by Theorem 3 in [77], and the second
step is by Lemma 11. By Lemma 14, we have

w1l = ]| < (4K (1 +92) + 2 I ) W] (57)

Therefore, taking the union bound of failure probabilities in
Lemmas 10, 11, and 12 and by D3(¥)D4(¥) < Dg(P)
from Property 10, we have that if the sample size n >
KSKA7T12Dg(W) - dlog®d, then the output Wy € RI*K
satisfies

. dlogn
[[Wo = W*|| S &°K? - 70\/Dg ()| =22 W] (58)

with probability at least 1 — n (@1 (W™)

E. Extension to Multi-Classification

We only show the analysis of binary classification in the
main body of the paper due to the simplicity of presentation
and highlight our major conclusions on the group imbalance.
We briefly introduce how to extend our analysis on binary
classification to multi-classification in this section. The main
idea is to define the label as a multi-dimensional vector and
apply the analysis for the binary classification case multiple
times. Specifically, let C' be the number of classes, where C' =
2¢ for a positive integer c. The label y; is a c-dimensional
vector, and its jth entry y; ; € {0,1} for j € [¢] and i € [n].
Such a formulation for the multi-classification problem can
be found in [45], [78]. Then, following the binary setup, data
x;,y; satisfies

P(y;; = la;) = Hy( W™, z;), (59)

for some unknown ground-truth neural network with un-
known weights W*, where H;(W™*, ;) is the j-th entry of
H(W*, ;) € R with the parameter W € R,

The training process is to minimize the empirical risk
function with a cross-entropy loss

% Z Z —yi.; log(H;(W,x;))

i=1 j=1

— (1 —yi;)log(l — Hj(W,x;))

::iffﬁ)(W)-
j=1

(60)

Note that f,gj )(W) has exactly the form as (2) in our paper
for the binary case. Therefore, we can apply the existing
theoretical results for f,(f )(W) with all j € [¢], and summing
up all the bounds yields the theoretical results for the multi-
class case.

We implement experiments on the CelebA dataset for 4-
classification. The only change is that we use the combinations
of two attributes, “blonde hair” and “pale skin” to generate
four classes of data. All other settings are the same. The results
are the following.

One can observe from Figure 9 that when the noise level
42 increases, i.e., when the co-variance of the minority group
increases, both the minority-group and average test accuracy
increase first and then decrease, coinciding with our insight

0.82 a---g
.o} --OF--E1-- B .,

©
3

,r*-*h*
- N
-

Test accuracy

0.78 == Minority-group accuracy-‘

=3~ Average accuracy
1072 10°
Noise level &2
Fig. 9: Test accuracy against the augmented noise level for
4-classification.

104

(P3). In Figure 10 (a) and (b), we can see opposite trends if
we increase the fraction of the minority group in the training
data, with the male being the minority or the female being the
minority. Figures 9 and 10 are consistent with our findings in
Figures 1 and 8, respectively.
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Fig. 10: The test accuracy on CelebA dataset has opposite
trends when the minority group fraction increases for 4-
classification. (a) Male group is the minority (b) Female group
is the minority

F. Discussion about Gaussian Mixture Model (GMM)

The GMM distribution intuitively means that each data
comes from a certain group, which is represented by a
certain Gaussian component with mean p; and co-variance
3, 1 € [L]. The fraction \; stands for the fraction of group
[ € [L]. This formulation is motivated by existing works [3],
[25], which are related to group imbalance in the case of
convolutional neural networks. One can see that each data
feature follows GMM by Eqn (4) of [3]. In our setup, we
define the data following the GMM for fully connected neural
networks, where labels are determined by the mixture of
Gaussian input and the ground-truth model.
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We also conduct an experiment on CelebA to show some
practical datasets satisfy the GMM model. We select data with
two attributes, male and female. We extract features before
the fully connected layer of the ResNet 9 model and fit the
features to a two-component GMM using the EM algorithm
[69]. The goodness of fit is measured by the average log-
likelihood score as in [79]. We compute the average log-
likelihood score of the CelebA dataset as 1.63 bits/dimension.
To see that 1.63 bits/dimension reflects a good fitting, we
generate synthetic data following the estimated GMM by
CelebA and then compute the log-likelihood score of fitting
the synthetic data to a two-component GMM. The resulting
score is 1.80 bits/dimension for the synthetic two-component
GMM data. Therefore, we can see that the quality of fitting
CelebA is almost as good as fitting synthetic data generated
by a GMM, which indicates that a two-component GMM is
a good fitting for the studied practical dataset generated by
CelebA.

Since many existing theoretical works [26], [28], [27], [59],
[29] consider the data as standard Gaussian, we also compute
the score if we use a single Gaussian to fit the data. The
resulting average log-likelihood score is 1.08 bits/dimension,
which is evidently smaller than the two-component GMM
considered in our manuscript. This shows our GMM can better
describe the real data.

Moreover, our GMM assumption goes beyond the state-of-
the-art assumption of the standard Gaussian for loss land-
scape analysis for one-hidden-layer neural networks with
convergence guarantees [26], [80], [57], [28], [29]. When
generalizing from the standard Gaussian to GMM, we make
new technical contributions to analyzing the more complicated
and challenging landscape of the risk function because of a
mixture of non-zero mean and non-unit standard deviation
Gaussians. We characterize the impact of the parameters of the
GMM model on the learning convergence and generalization
performance. In contrast, other existing theoretical works [10],
[11], [12], [81] that consider other input distributions that
are more general than the standard Gaussian model do not
explicitly quantify the impact of the distribution parameters
on the loss landscape and generalization performance.

G. Discussion about oy, and T

In this section, we show that the assumption that o,;, is not
very close to zero, or equivalently, 7 = ©(1), is mild. Even
when the real data have singular values very close to zero,
they can be approximated by low-rank data without hurting
the performance by only keeping a few significant singular
values and setting the small ones to zero. Thus, every practical
dataset can be approximated by a dataset with 7 = ©(1)
while maintaining the same performance. We verify this by
an experiment of binary classification on CelebA [31]. After
training with a ResNet-9, the output feature of each testing
image is 256-dimensional. One can find that the singular value
of the covariance matrix of features is close to 0 except for
the top singular values. The feature matrix reconstructed with
top singular values can achieve comparable testing accuracy as
using all singular values, as shown in Table II. One can observe

that the feature matrix reconstruction with top-5 singular
values, which is 2% of all the singular vectors, leads to a test
accuracy already close to that using all singular vectors, and
the performance gap is smaller than 4.5%. We can compute
that 7 = 4.6155 = ©(1) for the feature matrix reconstructed
by top 5 singular values.

TABLE II: Testing accuracy with a reconstructed feature
matrix using different amounts of singular values (s.v.)

Reconstruct with | top 5 s.v. | top 25 s.v. | all 256 s.v.
Accuracy 84.00% 85.00% 88.50%
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