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ABSTRACT Power converters have widespread applications in automotive, renewables, and power systems.
The demand for power modules with low power consumption and high efficiency has increased due to
advancements in semiconductor devices. So, power converters need to be highly efficient to reduce costs
associated with energy dissipation and cooling requirements. This paper discusses various active thermal
control methods for high-power power converters. It covers modulation and configuration techniques,
ranging from single configurations to cascaded, modular, and multilevel converters. These concepts form the
basis of power electronics building blocks, particularly relevant in all-electric ship systems. Power electronics
building blocks represent a thriving technology that will advance ship power systems, the thermal design of
which plays a crucial role in managing high heat dissipation levels. Hence, thermal management is essential
for reliable device performance. The paper thoroughly studies different active thermal control methods and
their impact on power semiconductor devices and converters, categorized per configurations, power routing
methods, modulation, and control layers. The review then moves to thermal control methods for the PEBBs
concept using multilevel converters in all-electric ship systems. The paper eventually outlines future research
directions for the thermal aspect of power electronics building blocks.

INDEX TERMS Power semiconductor device, active thermal control, multilevel converter, power electronics
building block, modulation strategy, power routing, health monitoring, all-electric ship.

NOMENCLATURE
3L-NPC Three-level Neutral-Point-Clamped.
2L-VSC Two-level Voltage Source Converter.
AES All-Electric Ship.
ALE Active Lifetime Extension.
ALT-60◦ DPWM Alternative 60◦ Discontinuous Pulse

Width Modulation.
ANPC Active Neutral-Point-Clamped

Converter.
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ATC Active Thermal Control.
CAN Controller Area Network.
CHB Cascaded H-Bridge.
CHB-MLC Cascaded H-Bridge Multi-level

Converter.
CM Condition Monitoring.
CONV-60◦ DPWM Conventional 60◦ Discontinuous

Pulse Width Modulation.
CTE Coefficients of Thermal Expansion.
DAB Dual Active Bridge.
DCCS Distributed Communication and

Control System.
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DFIG Doubly-Fed Induction Generator.
DPWM Discontinuous Pulse Width

Modulation.
ELT Estimated Lifetime.
EMI Electromagnetic Interference.
ESD Energy Storage Device.
ESS Energy Storage System.
EtherCAT Ethernet for Control Automation

Technology.
EV Electric Vehicle.
FC-MLC Flying Capacitor Multi-level

Converter.
FCS-MPC Finite Control Set Model Predictive

Control.
FDDI Fiber Distributed Data Interface.
FEM Finite Element Method.
FPGA Field-Programmable Gate Array.
FRT Fault Ride-Through.
GaN Gallium Nitride.
GSC Grid Side Converter.
HTSSM High-Temperature Superconducting

Synchronous Machine.
HVDC High-Voltage Direct Current.
HVRT High-Voltage Ride-Through.
IGBT Insulated-Gate Bipolar Transistor.
IM Induction Machine.
IMU Impedance Measurement Unit.
iPEBB Integrated Power Electronics Building

Block.
LVDC Low-Voltage Direct Current.
LVRT Low-Voltage Ride-Through.
MACRO Motion And Control Ring Optical.
MEA More Electric Aircraft.
MLC Multi-Level Converter.
MMC Modular Multi-level Converter.
MOSFET Metal Oxide Semiconductor Field

Effect Transistor.
MPPT Maximum Power Point tracking.
MVAC Medium-Voltage Alternating Current.
NLM Nearest Level Modulation.
NPC Neutral-Point-Clamped.
NPC-MLC Neutral-Point-Clamped Multi-level

Converter.
ONR Office of Naval Research.
OPT-ZSSPWM Optimal Zero Sequence Injection Pulse

Width Modulation.
PEBB Power Electronics Building Block.
PESNet Power Electronics System Network.
PI Proportional-Integral.
PMSM Permanent Magnet Synchronous

Motor.
PROFIBUS Process Field Bus.
PROFINET Process Field Net.
PROFINET IRT Process Field Net Isochronous Real

Time.
PSD Power Semiconductor Device.

PV Photovoltaic.
PWM Pulse Width Modulation.
QAB Quadruple Active Bridge.
RSC Rotor Side Converter.
RUL Remaining Useful Lifetime.
SE Sync Error.
SERCOS Serial Real-time Communications

System.
SHDCM Superconducting Homopolar Direct

Current Machines.
Si Silicon.
SiC Silicon Carbide.
SoH State-of-Health.
SPI Serial Peripheral Interface.
SVD Space Vector Diagram.
SVM Space Vector Modulation.
SVPWM Space Vector Pulse Width Modulation.
SyCCo-Bus Synchronous-Converter-Control-Bus.
ST Smart Transformer.
THD Total Harmonic Distortion.
THIPWM Third Harmonic Injected Pulse Width

Modulation.
TSEP Temperature-Sensitive Electrical

Parameter.
VSC Voltage Source Converter.
WBG Wide Bandgap.
WRN White Rabbit Network.
ZCS Zero-Current Switching.
ZVS Zero-Voltage Switching.

I. INTRODUCTION
A. BACKGROUND
Power converters find application in a diverse range of fields,
including but not limited to renewable energy systems like
photovoltaic systems [1], electric vehicles (EVs) and motor
drives [2], [3], custom power devices [4], all-electric ship
(AES) power system [5], and so on. Reliability and efficiency
of converters have been demanding issues, as they play a
crucial role in the design of power systems [6], [7], [8]. Power
semiconductor devices (PSDs) are typically integrated into
modules to increase power density and reduce material con-
sumption [9]. The failure distribution among power electronic
components is depicted in Figure 1a. The figure indicates
that capacitors and semiconductors stand out as the most
fragile components in terms of vulnerability among power
electronic components. Figure 1b compares the underlying
reasons for stresses and failures in power electronics con-
verters. As can be seen, temperature is the most dominant
cause of stress in power electronics converters, highlighting
the importance of controlling the temperature of PSDs [10].
This also highlights the crucial role of PSDs in ensuring the
reliability of power systems. PSD failure is the underlying
cause of power electronics converter faults, indicating that
enhancing the reliability of PSDs results in improved power
converter reliability.
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FIGURE 1. Power electronics converters.

B. MOTIVATION
As mentioned, one can declare that the power system relia-
bility is strongly linked to the reliability of the PSDs. PSD
failure is the fundamental reason for power converter faults,
meaning that improving the reliability of the PSDs leads to
an increase in the power converter reliability. To address this
issue, several studies have been conducted over the years,
including condition monitoring (CM), active thermal control
(ATC), and remaining useful lifetime (RUL) estimationmeth-
ods, as shown in Figure 2. The rationale behind the CM is
to utilize physical measurements to detect the occurrence of
failures or degradation in the entire power system. Based on
the outputs of CM, appropriate actions can be taken to prevent
a sudden shutdown of the system.

Another approach to enhance the reliability of the PSDs
is the ATC. As shown in Figure 2, the degradation indicator
data obtained from online CM methods can be utilized to
passively update and, significantly, actively control the sys-
tem’s lifetime through the use of ATC. As mentioned above,
thermal stress is the primary cause of PSD failures. ATC
mitigates the thermal stress on the components by reducing
the amplitude of temperature fluctuations or lowering the
average temperature without modifying the converter. This
means there probably be no additional expenses for improv-
ing the converter design or elements. It is worth pointing out
that the thermal control capability and the power system’s
performance must be simultaneously considered. Finally, the
RUL estimation method is, by and large, deployed to design
the ATC and then validate its effect. Figure 2 shows the rela-
tionship between the method mentioned earlier; CM, ATC,
and RUL estimation.

FIGURE 2. Relationship between the CM, the ATC, and the RUL estimation
methods.

The material layers in the power converter modules serve
to provide both functionality and electrical insulation [12].
In general, aluminum bond wires are used for the electric
connection between chips and terminals [13]. Figure 3 depicts
the layer sequence of an insulated gate bipolar transistor
(IGBT) module tied to a heatsink. Due to ambient temper-
ature and power consumption variations, the layers undergo
continuous heating and cooling processes, referred to as
thermal cycles [14]. Due to the mismatch in coefficients of
thermal expansion (CTE) between the layers, mechanical
stress occurs in the module [15], leading to aging and damage
to the modules [16]. The magnitude of the thermal cycles
contributes to the degree of aging [17]. Short-term cycles
mainly cause the bonds’ fatigue, leaving bond wire on the
surface and rising. Long-term cycles, despite the high ther-
mal capacitance of the base plate, affect its temperature and
lead to solder fatigue [18]. Plus, the modules’ failure means
inevitable maintenance, replacement, and thus outages and
the operators’ expenses.

Various studies have been conducted to improve the
lifetime and reliability of modules, including developing
improved connection technologies and assembly methods.
In [9], sintering is proposed as an alternative to the chips
soldering to improve the strength of the connections. The
matching of CTE values and the heat dissipation performance
is enhanced with the help of advanced materials [9], [14].
The delamination of the substrate can be reduced by avoiding
90◦ angles in the pattern, as discussed in [14]. Regulated
cooling can mitigate low-term ambient temperature swings,
as proposed in [19]. Several methods are deployed for cool-
ing the electronic elements [20], [21]. These approaches are
categorized into two main groups, active and passive, as per
the fact that an energy resource is needed for the cooling
process. Their merits and demerits are provided in [22], [23],
and [24]. In the ATC approach, a fluid is normally applied
as the coolant, and based on the working fluid’s type, a fan
or a pump is used to produce the cooling flow and forced
convection. Turning to the passive techniques, which are
traditional coolingmethods, heat sinks, and fins are employed
where free convection is the dominant mechanism of heat
transfer [25].
ATC is focused on reducing the impact of short

and medium-term thermal cycles. The approach uses
temperature-related control parameters to adjust the junction
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FIGURE 3. Schematic of an IGBT module [32].

temperatures in real time. Its objective is to minimize thermal
stress on the module by reducing temperature fluctuations.
Thermal control aims to regulate the junction temperatures
by adjusting the losses in the targeted chips through spe-
cific temperature-related control parameters. These parame-
ters include the switching frequency [26], [27], modulation
technique [28], DC-link voltage [29], gate voltage [30],
or distributing reactive power [31]. For instance, a short-
term temperature drop can be averted or decreased when
losses are escalated temporarily by increasing the switching
frequency. While CM necessitates understanding the junc-
tion temperature, ATC can function without it. Additionally,
an electrothermal model can derive real-time estimations
of junction temperatures through electrical measurements,
enabling more accurate thermal stress management [26].

C. STATE OF CONTRIBUTIONS
Numerous scholars have conducted research on the ATC of
power electronics converters, as documented in the literature.
A few papers have reviewed the ATC for PSDs and power
converters through cooling strategies. Although prior works
have proposed various techniques to improve the ATC, CM,
and RUL aspects of power electronics converters, there are
no solutions to address the ATC of power electronics build-
ing blocks (PEBBs) concept, health monitoring of PEBBs,
and their aging/degradation. This is particularly important
in AESs, where the modular multilevel converter (MMC)
based PEBBs concept needs cost-effective ATC methods to
reduce maintenance costs and increase reliability/availability.
To maintain power converters, it is necessary to anticipate
the state-of-health (SoH) and potential damage progression to
implement appropriate thermal control measures. The main
focus of this research is to provide a detailed overview of
various ATC methods applied in different configurations
of power electronics converters, including single converter,
cascaded or modular converter, and parallel converter config-
urations. Additionally, the impact of ATC on power module
and converter performance is analyzed, with a particular
emphasis on reliability, power loss, and junction tempera-
ture reduction. Finally, because modular and multilevel con-
verters shape PEBB stacks, the thermal controls of which
need to be designed, the paper introduces the concept of
PEBBs, specifically focusing on their application in AESs.

Furthermore, the scope of future work for ATC of PEBBs in
various high-power applications is proposed.

This work will serve as a comprehensive and useful refer-
ence for health monitoring, degradation, aging, and thermal
management of the PEBBs concept with the help of previ-
ous works on power converter topologies in terms of their
configuration, modulation strategy, and the most important
parameters that are useful for thermal control aspect of
PEBBs in AESs.

D. STRUCTURE OF PAPER
The remaining sections of the paper are structured in the
following manner. Section II presents various ATC methods
categorized by converter configurations (single, cascaded or
modular, and parallel) and various ATC methods of power
routing for modular converters. Section III provides the ATC
methods and various control levels with different bandwidths,
such as the ATC methods at the modulation level (including
switching loss reduction and conduction loss redistribution),
the system function level (including active power or energy
storage and reactive power), and the other levels. Section IV
provides the discussion, challenges, and scope of future work
in the AES power system. This section starts with the intro-
duction of PEBBs concept, the thermal aspect of the PEBBs
concept and moves to the discussion on ATC for various
topologies related to the PEBBs concept (such as multi-
level converters, multi-phase converters, and soft-switched
converters). Then it presents ATC methods in the PEBBs
concept, the communication protocols of PEBBs, and how
they can help ATCmethods. After that, this section details the
advantages and disadvantages of different converters used for
shaping high-power rating converters in the PEBBs concept.
Ultimately, this section finishes with thermal data acquisi-
tion, health monitoring and degradation, cost analysis, ATC’s
effect on the system’s operation, and PSD technology and
packaging aspects for future work. Finally, Section V con-
cludes the paper.

II. ATC METHOD
Before reviewing the ATC methods, a brief explanation of
the thermal model used in the literature review should be
provided.

A. THERMAL MODEL
Improvement of thermal management systems can be
achieved with a highly accurate estimation of semiconductor
device temperature. To do so, high-fidelity thermal mod-
els must be developed. There are several approaches to
developing thermal models, which are discussed below. The
measured response from real systems can be adapted to fit
the parameters of thermal equivalent circuits. Two standard
forms of the thermal circuit have been extensively used for
thermal modeling, as shown in Figure 4: Cauer and Foster
networks [33]. The following section provides an overview
of these two thermal networks.
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FIGURE 4. Thermal models.

1) CAUER NETWORK
The heat conduction path of a semiconductor material can
be modeled by an equivalent electrical circuit, as presented
in Figure 4a. This circuit is called the Cauer network [34].
Thermal resistance over the heat conduction path is denoted
by R, and C denotes thermal capacitance. The junction and
ambient temperatures are indicated by Tj and Ta, respectively.
The power dissipation is denoted by P. The Cauer network
represents the physical properties of the heat conduction path
more accurately, which is a significant advantage. Moreover,
this network allows independent modeling of the heat sink
and power semiconductor device, as shown in Figure 4b.
Later they can be combined to develop intricate thermal
models [36]. Nevertheless, the Cauer network is not precisely
accurate due to heat spreading. Also, providing exact param-
eters to the model is a complex process. The advantage of
Foster networks is that they are easy to use [35]. However, the
use of the Foster network is restricted to specific applications
only. And unlike the Cauer network, the elements of the Fos-
ter network cannot be designed individually and combined
later.

2) FOSTER NETWORK
Foster networks are a non-parametric model tuned to step
response data of the thermal conduction path. There is no
physical significance of the components in this circuit, and
each component only represents a time constant. A typical
foster network is presented in Figure 4c. The advantage of
Foster networks is that they are easy to use [35]. However,
the use of the Foster-type circuit is restricted to specific
applications only. And unlike the Cauer model, the elements
of the Foster network cannot be designed individually and
combined later.

FIGURE 5. 1Tj control in PWM method [46].

It should be noted that authors in the literature review used
various thermal networks with different accuracy and layers
depending on the focus of their work (see Figure 3). The
thermal modeling of power converters and related mathemat-
ical equations used in each paper deserve a separate review
paper which is out of this work’s scope. Since this paper
only focuses on the ATC methods, this work does not review
the thermal networks in the literature. Table 1 compares the
various thermal models for complexity, accuracy, and multi-
chip interfaces [40]. More details and mathematical models
of thermal networks can be found in [36] and [40].

B. ATC IN DIFFERENT CONVERTER CONFIGURATIONS
The ATC, as a newly-presented method to modify power
losses and thermal stress, will be represented in this section.
The central concept behind this problem is to adjust the
power converter’s control variables related to temperature to
modify the junction temperature and reduce damage caused
by thermal cycling, as discussed in [27] and [32]. The ATC
enhances the reliability of PSDs, thereby increasing the
power system’s lifetime. The primary objective has been to
regulate junction temperature and other related-temperature
values. Based on the type of converter, one can catego-
rize the ATC into single, cascaded, and parallel converters.
Single converter configurations include 2L and 3L convert-
ers in AES and drive applications, as well as converters
in solar applications, as discussed in [41] and [42]. Cas-
caded converter configurations consist of cascaded h-bridge
(CHB) converters andmodularmulti-level converters (MMC)
[43], [44]. Lastly, parallel 2L and 3L DC/DC converter con-
figurations have been used in wind energy and motor drive
applications.

1) ATC IN SINGLE CONVERTER CONFIGURATIONS
One clear-cut way to adjust the switching frequency is to
realize thermal control, which directly affects the power
losses [27], [45], and a negligible effect on the power sys-
tem’s working condition. In [46], a method was presented
to reduce the switching frequency of a 2L converter in
an adjustable speed drive based on changes in junction
temperature. As shown in Figure 5, there are three stages
to control 1Tj. First, average power losses are calculated
based on power factor and commanded switching frequency
(f ∗
s ). Second, the temperature variation (1T ∗

j ) of the PSD
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TABLE 1. Comparison of the most commonly used thermal networks.

is calculated. Third, the switching frequency is determined
using a hysteretic control [46]:

fs =


f mins 1T ∗

j > T1,
f ∗
s 1T ∗

j < T2,
unchange T1 < 1T ∗

j < T2

(1)

In the above equation, T1 and T2 represent the upper and
lower boundaries for the hysteretic temperature variations
(1T ∗

j ), and f ∗
s is commanded switching frequency. They

adjust the switching frequency, which is calculated based on
the average temperature (Tjm) and the temperature variation
(1T ∗

j ). While the results indicate that this control method
can enhance reliability more effectively than controlling a
single parameter, combining control parameters can increase
the computational complexity of the control system.

Modifying the modulation strategies and applying modern
control approaches is an excellent way to address the above
issue. In [47], a switching control method based on pulse
width modulation (PWM) is proposed for managing power
losses in the three-level neutral-point-clamped (3L-NPC)
converter. The technique described here is active lifetime
extension (ALE) and does not require additional equipment.
It can be applied to the modulation index (m) range between
0.5 and 1. In this inverter, there exist 27 various switching
states in the 3L-NPC, as displayed in Figure 6. Applying
different switching states can reduce switching losses or
conduction losses. For instance, the region highlighted in
light yellow in Figure 6 remarks redundant switching states.
Should the conduction losses need to be reduced, the switch-
ing states resulting in higher conduction losses are eradicated
from the switching sequence. Otherwise, if the reduction of
switching losses has priority, the corresponding states are
prohibited, as depicted in Figure 7.

The use of different switching states can help to decrease
switching or conduction losses. The light yellow section
in Figure 6 represents redundant switching states. If it is

FIGURE 6. Various kinds of switching states in the 3L-NPC inverter [47].

FIGURE 7. The effect of redundant states on switching and conduction
losses [47].

necessary to decrease conduction losses, the switching states
that result in higher conduction losses are eliminated from the
switching sequence. On the other hand, if reducing switching
losses must be decreased, the related states are prohibited,
as depicted in Figure 7.

The inner hexagon region highlighted in light turquoise
in Figure 6 contains redundant switching states that can be
utilized to alter the current paths flowing in the PSDs. This
alteration helps lower the conduction or switching losses
depending on the priority. This control strategy is particularly
useful for grid-connected power electronics converters during
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fault ride-through (FRT) scenarios, such as high-voltage ride-
through (HVRT) and low-voltage ride-through (LVRT), and
during start-up operation of drives, where the modulation
index is not high, and the voltage reference is in the inner
hexagon of Figure 6, as presented in [48], [49], and [50].

The study presented in [51] proposes a junction temper-
ature controller for a 2L-3P converter based on the finite
control set model predictive control (FCS-MPC). The con-
troller aims to control the amplitude of thermal cycles and
estimates the load current, junction temperature, and leading
to thermal stress for all space vectors of the next sampling
instant. The cost function parameters are then obtained per
these predictions, including the error from the current refer-
ence, the thermal stress across the switches, the temperature
discrepancy between the chips, and the PSDs’ total power
losses. After that, the parameters are weighed, and the space
vector concerning the lowest cost function is selected and
applied to the converter. Figure 8 provides a visual represen-
tation of this approach. According to this method, a control
sequence for a current-source active rectifier was presented
in [52] as a control algorithm based on a finite number of
switching states of the power converter. To opt for the optimal
switching state, an objective function calculates the error
between foreseen and reference values of both electrical and
thermal objectives. The results show that the electrical and
thermal objectives can be attained by minimizing the multi-
objective weighted cost function. It is worth pointing out that
the power converter’s output performance might decrease,
and the computation’s complexity might increase.

FIGURE 8. Schematic of ATC method based on FCS-MPC [52].

In the study conducted in [52], the authors proposed a
control algorithm for a rectifier based on a finite set of
switching states of the power converter. The algorithm aims
to opt for the best switching state by calculating an objective
function (which is based on electrical and thermal objectives)
that measures the discrepancy between predicted and refer-
ence figures. The findings indicate that the multi-objective
weighted cost function can be optimized for the purposes.

It bears pointing out that the power converter’s output perfor-
mance may decrease, and the computation’s complexity may
rise due to the algorithm’s implementation.

2) ATC IN CASCADED OR MODULAR CONVERTER
CONFIGURATIONS
Modular or cascaded power converters are becoming more
prevalent in different voltage ranges. As previously men-
tioned, the most commonly used topologies for modular
power converters are CHB converters andMMCs. For having
many cells and submodules, these converters are suscepti-
ble to uneven thermal stress, which can negatively impact
the PSDs and the overall reliability of the power converter.
Ref. [53] presented a thorough review of current state-of-
the-art opportunities and the future perspective of MMCs for
transportation electrification applications.

In [54], a power routing method was proposed to imple-
ment ATC by unevenly distributing the load among the
cascaded or modular configuration modules. As shown in
Figure 9, power routing involves optimizing the allocation
of power among each module to improve the efficiency and
reliability of the system [54]. The modules may be connected
in series, parallel, or a series-parallel configuration. When
connected in a series, the modules share the same current, but
eachmodule has the ability to regulate its output voltage. This
allows for customization of the power output of each individ-
ual module by adjusting its output voltage. Similarly, when
connected in parallel, the modules share the same voltage,
but each module can independently control its output current,
which provides flexibility in adjusting the current output of
each module. To regulate the cell’s power, the current is
the parameter manipulated instead of the voltage. Therefore,
this methodology involves using the power routing technique
for the CHB converters [55], a modular smart transformer
(ST) that comprises a CHB to convert medium voltage AC
to medium voltage DC [56], and dual active bridges (DAB)
for converting medium voltage DC to low voltage DC [57].
It should be mentioned that the most damaged cells can be
conserved with the help of this method. The power routing
will be discussed in detail in the next section.

FIGURE 9. The basis of the power routing method [54].

Turning to MMCs, a wide variety of research works have
been done onMMCs to enhance the output performance [58],
[59], [60], [61], decrease the complexity of computation [62],
[63], [64], and also provide a cost-effective power loss
balance among submodules [57], [65], [66]. Hence, the
ATC technique is commonly utilized to achieve a uniform
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FIGURE 10. The control schematic of the submodule’s temperature [70].

distribution of thermal stress across the various submodules
of the system, which helps to enhance the lifespan of the
power system [57]. For instance, the unbalanced thermal
distribution among submodules brought about by the mis-
match in the parameters of the submodule was proposed
in [67]. Because the capacitors in the submodules are not
identical, the switching and conduction losses of the asso-
ciated submodules will differ, resulting in uneven thermal
stress distribution across the submodules. To overcome this
issue, an active thermal balancing control method was pro-
posed, which involves integrating the lower IGBT’s junction
temperature and the capacitor’s voltage into an algorithm
that employs a weight function. The weight factor is varied
between zero and a predetermined value to ensure that there
is both equal thermal circulation among the submodules and
balanced capacitor voltage levels [68]:

Li = (1− α) × vinorm − (α) × T inorm × sing(iarm) (2)

In which α represents the weight factor, and vinorm and
T inorm indicate the variance in the capacitor’s voltage and the
junction temperature, respectively. The experimental study
was done in various case studies considering different sub-
module capacitors. The findings were used to validate the
suggested thermal balancing control techniques that enable
uniform distribution of temperature across submodules [67].
Reference [69] presents an approach to incorporate the
junction temperature into the capacitor voltage balancing
algorithm to achieve uniform thermal distribution among the
submodules. Unlike the research in [67], the temperature of
the devices within the submodule is combined individually
with the dedicated capacitor voltage, resulting in differ-
ent distinct cost functions for the upper/lower IGBTs and
upper/lower diodes. The appropriate cost function is chosen
for each sampling instant, considering the current direction in
each leg and the need to either insert or bypass submodules.
The outcomes indicated that the suggested approach signifi-
cantly reduced the inconsistency and temperature dispersion
among the submodules.

In [70], submodule thermal balancing was achieved by
adjustment of the capacitor’s voltage of each submodule in
a leg and simultaneously maintaining the sum of the voltages
of the submodule’s capacitor at the rated value to control
the voltage of the DC-link. Figure 10 illustrates the compar-
ison between the temperature of each submodule, denoted
as TSM ,i, and the average temperature of all submodules in
the leg denoted as Tavg, where the difference is fed into a
proportional-integral (PI) controller. The PI controller gen-
erates the voltage differential for each submodule voltage

FIGURE 11. 1P hybrid-based MMC topology [71].

reference, as described in [70]. The capacitors’ voltages can
be adjusted per the work done in [72], but additional terms
related to the temperature were considered. It should be noted
that while the temperature among submodules was balanced,
the capacitors’ unbalanced voltages resulted in a distorted
voltage waveform of the multi-level leg.

Figure 11 shows that the thermal stress circulation among
the submodules of hybrid-based MMC can become more
unbalanced under a high voltage modulation index, as noted
in [71]. The ATC was introduced for half- and full-bridge
submodules to address this issue. In the case of full-bridge
submodules, two kinds of bypassed switching modes were
modified to produce a symmetrical switching arrangement
when the leg voltage is positive, as depicted in Figure 12 [71].
The same procedure is applied when the voltage of the leg
is negative. While the power loss distribution in full-bridge
submodules is more balanced, the symmetrical switching
arrangement does not negatively affect the performance,
decreasing thermal stress on the most highly stressed devices.
In addition, a thyristor that can resist high current is connected
in parallel with the lower leg of the submodule, as shown in
Figure 13, to bypass the positive current of the leg to decrease
the thermal stress across the lower IGBT.

3) ATC IN PARALLEL CONVERTER CONFIGURATIONS
A feasible solution is to use a parallel connection of many
power converters to address the challenges of applications
where the current is high and the output voltage is low.
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FIGURE 12. The configuration of switching states when the leg voltage is
positive [71].

FIGURE 13. Half-bridge submodule with a parallel thyristor [71].

FIGURE 14. The thermal loading control method [73].

This configuration enhances the system’s reliability as redun-
dancy can be straightforwardly applied. However, even
though sharing the load is used to dispatch the load current
and achieve an equal load sharing, it does not ensure an
equal thermal stress circulation among the parallel converters.
To address this, an active thermal sharing for the parallel
DC/DC converter was presented in [73], [74], and [75].
This approach uses the power converters’ temperature values
to redistribute the load current between parallel converters.
Figure 14 shows that the current and temperature data were
combined, and the resulting data was utilized to improve load
sharing. The purpose of this control diagram is to ensure that
the thermal stress is spread evenly. The merit of this method
is its ease of implementation. However, it should be noted
that there may be a small rise in the failure rate of individual
converters.

Implementing a droop-based ATC method, as described
in [81] and [82], can enhance the system’s reliability. In addi-
tion, [76] proposed a control approach for sharing the load
in which the droop gain is adjusted per the computed life-
time and calculated as the sum of the used lifetime. This is
expressed in the following equation:

Rd,k = ACLk(pu) × Rdo (3)

where Rdo is the highest acceptable value of the droop gain.
To achieve load sharing among the converters based on the
thermal stress across the PSDs and ensure equal used lifetime
for all converters, it is necessary to regulate the corresponding
droop gains in accordance with the used lifetime of each
converter. By doing so, the accumulated used lifetime of the
converters can be balanced, resulting in the improved overall
reliability of the system.

The power routing approach can also be utilized in a
parallel configuration to achieve balanced aging of the con-
verter cells. This method was proposed in [77] and [78] for a
parallel DC/DC converter and a two-level voltage source con-
verter (2L-VSC) in a permanent magnet synchronous motor
(PMSM), respectively. Specifically, it reallocates power to
each converter cell based on its aging status, accomplished by
regulating the duty cycle to produce the appropriate switching
pulses. By extending the lifetime of the most aged cell, the
reliability of the entire system is enhanced.

In wind power applications, as depicted in Figure 15, the
parallel converter configuration has a drawback of significant
temperature variation for the fluctuation of the wind speed.
To mitigate temperature fluctuations in the PSDs resulting
from changes in wind speed, such as wind gusts, the ATC
method was implemented in the wind power system, taking
into account reactive power, as shown in Figure 15 [31], [79],
[80], and [83]. The delivered reactive power can consider-
ably affect components’ loading in this configuration. It also
does not affect the converter’s existing mechanical/electrical
power.

The reactive power can regulate the phase angle (between
the output current and voltage). It also alters the current
flowing through the PSDs, which will impact the power loss
and thermal stress across the PSDs. Using an appropriate
amount of reactive power to heat the device when the power
is low will significantly reduce the temperature fluctuation of
the PSDs. However, it bears noting that using reactive power
has some demerits, including being applicable only in parallel
converter configurations and increasing the diodes’ thermal
load.

Table 2 summarizes the most critical ATC methods for
power converters based on various configurations.

FIGURE 15. Wind power system with parallel converter configuration [79].

C. ATC AND POWER ROUTING
Power routing is an advanced active thermal management
technique that balances the thermal stress within modular
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TABLE 2. Summary of important ATC methods based on power converter configurations.

power electronic converters [84]. Through the power routing
approach, each modular power electronic converter module
manages a different amount of power to mitigate the thermal
stress generated by thermal cycling. The primary goal of
this method is to prolong the lifetime of the most vulnerable
modules in a modular power electronic converter. This is
achieved by operating the modules under uneven loading
conditions and reducing the stress on the most deteriorated
modules by transferring their load to less vulnerable modules.

Figure 16a shows a modular converter with three modules
where modules 1 to 3 handle power P1 to P3, respectively.
So, the total power will be PT = P1 + P2 + P3 where
P1 = P2 = P3 under regular operating conditions. How-
ever, under balanced load-sharing conditions, the aging of the
modules will be unequal, which might lead to an untimely
breakdown of the modules and, thus, unscheduled mainte-
nance. Figure 16b shows that, with the implementation of
power routing, each module handles a different power value
depending on its aging status. In this way, power routing
can be applied to optimize the maintenance schedule and

increase the lifetime of modular power converters. The cells
within a modular converter can be linked in a series, parallel,
or hybrid arrangement, as shown in Figures 17a, 17b, and 17c,
respectively [85].
In the case of modules connected in series, the output

power of each cell can be managed by adjusting the out-
put voltage of each cell. Likewise, for parallel connected
modules, the output power from each cell can be regulated
by adjusting the output current from each cell. Lastly, for a
combined series and parallel structure, the current, voltage,
or both can be controlled to regulate the power output from
each cell. The primary goal of power routing is to improve the
converter’s lifetime by optimizing its maintenance schedule.
Calculating the converters’ RUL and SoH is necessary to
apply power routing methods effectively. Then maintenance
can be scheduled simultaneously for all the modules of a
power electronic converter by considering the RUL of the
modules. This concept is illustrated in Figure 18 in which
RUL equalization is achieved between two PEBBs. Here the
red bars indicate the expected failure time of the two PEBBs,
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FIGURE 16. Power routing concept [54], [85].

FIGURE 17. Power routing in different modular converter topologies [54].

and P1 and P2 indicate the power each PEBB processes.
By applying the power routing method, the power managed
by each PEBB can be manipulated so that maintenance for
both PEBBs is scheduled at the exact same time. The green
bar represents the unified maintenance schedule for both
PEBBs.

The power routing method can be employed for modu-
lar converters to regulate the temperature of the PSDs and
increase their RULs. Several approaches have been investi-
gated in literature for implementing power routing techniques
with series and parallel connected converters, as discussed in
the sections below.

1) POWER ROUTING IN PARALLEL-CONNECTED
MODULAR CONVERTER
A closed-loop controller has been implemented in [77] that
considers the SoH of a three-cell parallel-connected DC/DC
converter to improve the maintenance cost of the system,

FIGURE 18. RUL management via power routing [84].

FIGURE 19. Power routing in three-cell DC/DC boost converter [77].

as shown in Figure 19a. Figure 19b shows the control scheme
for such a converter and the simulated results.

Here, the SoH block estimates the aging of each cell
by utilizing data on the usage of the power system and
instantaneous electrical measurements. Then it provides a
temperature reference (T ∗

n ) to the thermal controller block,
determining the appropriate power-sharing factor (k∗

n ) for
the parallel cells. Afterward, the reference power for each
individual cell (P∗

n) is determined by dividing the total instan-
taneous reference power (P∗) by the control factor (k∗

n ). From
the reference power, it is possible to determine the reference
current (I∗n ), which can be utilized to calculate the voltage (vn)
that must be modulated by each individual cell. A conven-
tional PI controller assists in determining vn. The proposed
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FIGURE 20. Lifetime estimation of three-cell DC/DC boost converter [86].

algorithm successfully redistributes the power among the
cells and achieves thermal management.

A power routing mechanism is presented in [86] that
decreases the aging imbalance in an interleaved boost con-
verter with three modules. Figure 20a depicts the proposed
control algorithm. The upper segment of the control scheme
determines the power that needs to be processed by each
module to re-balance the RUL of the modules. The bottom
segment of the control scheme employs two PI controllers
to determine the reference power P∗

n and reference volt-
age for the power electronic devices. The application of
power routing allows proper thermal management of the cells
and extends the converter’s overall lifetime, as shown in
Figure 20b. By the utilization of the suggested power routing
approach, the lifetime of the most vulnerable power module
has been extended by 24 months.

A virtual resistance-based power routing technique for par-
allel converters of the low voltage stage of an ST is presented
in [56]. The power routing method is utilized when the power
system is under partial load. The arrangement of the 3-stage
ST for power routing is depicted in Figure 21a. The LV
side consists of three parallel connected converters. The pro-
posed control framework for implementing the power routing
method is depicted in Figure 21b. Here, three virtual resistors
(Rv1, Rv2, and Rv3) are used to distribute power among the
three converters. The values of resistors are adjusted based
on the feedback obtained from the CM and are determined as
a function of the cumulative damage:

Rvi = f (Dacc) (4)

The accumulated damage is estimated by sensing the semi-
conductor device’s junction temperature (Tj). A path with
high resistance indicates low loading, and vice versa for a

FIGURE 21. A virtual power routing technique for parallel converters in
an ST [56].

low-resistance path. The reference current for any specific
converter (i∗cn) can be calculated by using the total reference
current (i∗ref ) generated by the voltage controller and the
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virtual resistors as expressed below [56]:

[i∗c1, i
∗
c2, i

∗
c3] =

( i∗ref
Rv2Rv3 + Rv1Rv2 + Rv1Rv3

)
.[Rv2Rv3,Rv1Rv2,Rv1Rv3] (5)

Figure 21c depicts the converters’ estimated lifetime (ELT)
with different initial damages. The converters will break
down after different intervals if power routing is not applied.
The ELT of the most aged cell in the system can be
extended with the virtual resistor-based power routing tech-
nique. Figure 21d illustrates the effect of the suggested power
routing approach on the converters’ junction temperature.
Initially, the load on converter number 3 is less than the other
two converters, and after t = 20s, converter number 3 is
loaded more than the other converters.

The graph shown in Figure 21d illustrates that the virtual
resistors cause the current to vary, and as a result, the junction
temperature changes with the loading of the converter. When
a converter is not in use, the junction temperature decreases,
but when the load on the converter increases, the junction
temperature rises again. A power routing algorithm for amore
electric aircraft (MEA) with four parallel DABs has been
proposed in [87] and [88] to improve the system’s lifetime.
The MEA architecture and the control algorithm are shown
in Figures 22a and 22b, respectively. The power routing
algorithm presented in this study estimates the RULs of the
converters by analyzing the junction temperature profile gen-
erated by the converters’ mission profile. The total damage
for each converter can be calculated as follows [88]:

Di = Dini,i + 6m
period=11Di (6)

where Di is total accumulated damage and Dini,i is initial
damage. The RUL for a specific converter can be expressed
below [88]:

LTexp,i =
1− Di
1Di

(7)

where 1Di is the rate of damage change over a specific time
interval. Due to thermal cycling, the RUL for each converter
is different, and the controller determines the power each
converter must process to extend the lifetime of the converter.
During the full load operation, all converters process an equal
amount of power, while the power routing algorithm is solely
operational under partial load conditions. Figure 23a illus-
trates the accumulated damage of the converters, both with
and without the implementation of power routing. The cells
wear out at a different rate when no lifetime control method is
activated. The cells process power as per their thermal stress
with active lifetime control. Thus, the accumulated damages
converge to a common point, as seen in Figure 23b.
The effect of power routing on the aging of the ST’s ten

parallel connected DAB cells is investigated in [89]. The
finding from this study is depicted in Figure 24. Figure 24a
illustrates the damage sustained by the DAB cells while shar-
ing the power equally for 400 months. The first breakdown

FIGURE 22. Power routing for an MEA [88].

occurs in the 200th month, and the last occurs in the 370th
month, leading to several interruptions in regular operation
due to maintenance intervals. However, while the power
routing algorithm is implemented, the breakdown of all cells
occurs in the 293rd month (Figure 24b), which reduces the
maintenance intervals.

A case study has been presented in [54] to demonstrate the
effectiveness of power routing in reducing the thermal cycling
of the most deteriorated cells of the low-voltage conversion
stage of an ST. Figure 25 shows the results from this study,
where cell 1 was the most deteriorated cell. The proposed
power routing technique reduces the thermal cycling in cell
one, which results in the extension of the lifetime of cell
one. The efficacy of the virtual resistors-based power rout-
ing method in reducing thermal stress in a modular DC/DC
converter, in which several quadruple active bridges (QABs)
converters are included, has been investigated in [90]. The
outcomes obtained indicate the efficiency of the control
algorithm in postponing the system failure.

2) POWER ROUTING IN SERIES-CONNECTED
MODULAR CONVERTER
Modulation strategies that have been modified can be uti-
lized to apply power routing in modular converters that are
connected in series and parallel. These strategies enable the
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FIGURE 23. Impact of power routing on the accumulated damage [88].

FIGURE 24. The impact of power routing on the aging of DAB cells [89].

control of the thermal stress of each converter individually.
A discontinuous PWM (DPWM) based power routing tech-
nique for CHB converters is presented in [91]. The DPWM

FIGURE 25. Thermal cycle reduction in the most aged cell of the LV stage
converter in an ST [54].

FIGURE 26. Power routing with DPWM method [91].

reduces the switching loss by clamping the output voltage
at either the positive or negative DC-link voltage. The loss
reduction is significant compared to the continuous PWM
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FIGURE 27. Modular ST [92].

FIGURE 28. Junction temperature of CHB and DAB cells with and without
clamping signal [92].

techniques because the semiconductor devices cannot switch
in the clamping region. As shown in Figure 26a, the proposed
method has two modulation signal types. A positive offset
voltage Voff ,p is added to the fundamental reference volt-
age Vref ,fund to obtain the modulation signal Vref ,ns, which
has a clamping zone. The most vulnerable converters are
modulated with Vref ,ns as the clamping region reduces the
generated losses. The other modulation signal Vref ,s has no
clamping region and a negative offset voltage Voff ,n, compen-
sating the clamping of other converters. The less vulnerable
converters are modulated with this signal. The ultimate goal
of the modulation strategy is to delay the failure of the most
vulnerable converters. The modulation strategy’s application
is depicted in Figure 26b, depending on the converters’ condi-
tion. The converter with lesser RUL is modulated with Vref ,ns

to decrease the thermal stress, and the one with higher RUL
is modulated with Vref ,s, compensating for the positive offset
voltage.

The power routing concept presented in [91] is extended
in [92] that applies a discontinuous modulation technique
to the medium-voltage alternating current (MVAC) to low-
voltage direct current (LVDC) building block of an ST to
achieve thermal management (Figure 27). This study con-
siders the DAB as the DC/DC converter. After applying
the proposed modulation technique, the estimated CHBs’
and DABs’ junction temperatures with a fixed 60◦ clamping
angle are shown in Figures28a and 28b, respectively. For the
CHB cell, the junction temperature rises to 82◦C with the
non-clamped signal, while for the clamped one, the junc-
tion temperature reaches around 43.5◦C. For the DAB cells,
the maximum junction temperature reaches 99.8◦C with the
clamped signal and 78.7◦C for the non-clamped signal.
An advanced discontinuous modulation technique for

implementing power routing in STs has been proposed in [93]
that manages the thermal stress within the CHB converters
and the isolated DC/DC converters. Another power routing
technique for improving the thermal performance of CHB
converters has been proposed in [94]. This work has applied a
non-conventional phase-shifted PWM that increases the most
vulnerable cells’ lifetime and reduces the cells’ harmonic
distortion. A multi-frequency modulation-based power rout-
ing technique is presented in [55], where a third harmonic
component is injected into the duty cycle of CHB converters.
The injection of a third harmonic component maximizes the
utilization of DC-link voltage, akin to the third harmonic
injected PWM (THIPWM) method. Figure 29 illustrates a
3-cell CHB converter featuring three paths (PA, PB, and PC )
for power flow. Failure of any single cell or power path will
stop the operation of the converter. One approach to avoid
this situation is to decrease the load on the power path with
the highest degradation level. Figure 29b depicts a scenario
where the loading on power path A is reduced to protect cell
A from untimely breakdown.

Figure 29 demonstrates the concept of unbalanced power-
sharing between a three-cell CHB where the first three rows
show the duty cycle of the cells, and the fourth row shows the
power-sharing between the cells. In Figure 30a, the power-
sharing is balanced between the cells, with each cell having
the same duty cycle. Figure 30b shows unbalanced power
sharing between the cells where the cells with higher loads
have a higher duty cycle. Here, the unbalanced power shar-
ing is restricted when the duty cycle becomes maximum.
The power imbalance capacity is extended when the third
harmonic voltage is injected with the fundamental voltage,
as shown in Figure 30c.

III. ATC METHOD AND CONTROL LEVELS
The failure procedures of power converter elements are not
straightforward and rely on several decisive factors [10], [68],
[95], [96], [97]. Thermal cycling, which refers to temperature
variations of the power converter, is a common cause of
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FIGURE 29. Power flow between CHB cells in case of balanced and
unbalanced power-sharing [55].

FIGURE 30. Power routing technique [55].

failures in converters. Temperature fluctuations on various
materials with different CTE can bring about continuous
interruptions in the contacting areas within or between the
elements, ultimately leading to a shortened lifespan of the
entire power converter. A multitude of producers of power
converter elements, like the PSD or capacitors, have mod-
ified their lifespan approaches, which are more than capa-
ble of making an accurate and reliable estimation of the
lifespan as per specific thermal behaviors seen by the ele-
ments [12], [98], [99], [100]. A research study conducted in
the 1990s aimed to establish a numerical correlation between

the thermal cycling features of the IGBT, the quantity of
failed thermal cycles, the rise in the temperature fluctua-
tion dTj, and the average temperature value Tm. The study
found that the lifetime of PSDs decreases as the temperature
fluctuation and mean temperature level increase, as shown
in Figures 31a and 31b, respectively. This correlation was
described and validated based on several analytical models
and lifespan tests in [12], [101], [102], [103], and [104].
What is more, other determining factors; such as the extensive
usage of power electronics, network, and electric machine
faults, short-circuits and open-circuits, inrush current, etc.;
can have a negative role in thermal loading and hence bring
about overheating damages to the converter. In general, the
power determines the voltage or current of the converter. The
variation in the loading of power converter components can
hugely influence the variable mission profiles, especially in
applications like motor drives, photovoltaic systems, or wind
turbine systems, where the power is inconsistent. This leads
to complex thermal behaviors and burning-out failures of the
elements [105].

FIGURE 31. Numerical correlation between the thermal cycling
characteristics of the IGBT and the quantity of failed thermal cycles.

The thermal cycling in each device varies depending on the
place and reasons for the failure. As a case in point, an empiri-
cal temperature measurement study on an opened IGBT using
an infrared camera is depicted in Figure 32, where the IGBT’s
real-time temperature in a 10kW 3P-3L-NPC photovoltaic
(PV) inverter is presented. The configuration of the power
converter is illustrated in Figure 33 [106]. The chip tempera-
ture Tj and base plate temperature Tc are two testing points
for measurement. The thermal profiles of these measured
temperatures are represented in Figure 32a, in which the con-
verted power alters as the solar irradiance changes. Figure 32a
illustrates that the temperature of the junction (Tj) is higher
than that of the case (Tc) when there are bigger magnitudes
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FIGURE 32. Testing outcomes of thermal behaviors inside the PSD [106].

of thermal variations and slow variations in temperature due
to power changes. The thermal behavior of Tj and Tc over
a shorter time period of 0.2s is shown in Figure 32a, where
the solar irradiance maintains consistent, and the converter is
loaded at a nominal power of 10kW. Another type of thermal
cycling is shown in Figure 32b, where Tj fluctuates faster at
a frequency of 50Hz with a smaller but steady magnitude.

FIGURE 33. Configuration and testing conditions for figure 32 [106].

It can be concluded that the lifespan and reliability of a
converter rely heavily on the thermal loading of the PSDs.
Various aspects of the energy conversion system’s operations
can affect the converter’s thermal feature. Consequently, the
thermal stress across the PSDs can vary significantly as per
their places and the disturbances for the converter’s load,
resulting in different behaviors and time constants.

By and large, the failure of an individual element can occur
due to a discrepancy between the stress level, which refers to
the thermal loading or cycling of the device, and the strength
level, which is represented by the device’s intrinsic ability
or rating to endure thermal stress. According to Figure 34,
the thermal stress experienced by a PSD relies heavily on the
user’s behavior and mission profile, making it preferable to
have a range of stress levels instead of a single point of focus.
Furthermore, the strength of individual elements must have
a distribution degree to account for variations in production
and installation into the system. Consequently, an intersection
area between the stress and strength levels can be recognized,
which indicates a likelihood of failure.

FIGURE 34. ATC for enhanced reliability of power converters.

One practical approach to reduce the probability of fail-
ure or increase the reliability of power electronic elements
is to minimize the crossing area between the stress and
strength levels, which can be achieved by reducing the stress
range. As shown in Figure 34, this can be accomplished by
decreasing the thermal loading of the PSD by minimizing
fluctuations or reducing the mean temperature. Thus, the
converter’s strength does not require to be altered, and no
extra hardware cost is required to improve the strength of
elements.

As mentioned earlier, several aspects with different time
constants influence a converter’s thermal behavior. There-
fore, there are ample opportunities and degrees of freedom
to modify the thermal loading of the PSDs, resulting in more
desirable reliability characteristics. Due to the relatively high
power loss density and intense thermal cycling, PSDs are con-
sidered one of the most fragile elements in power electronics
converters [10], [68], [97].

The control layers and variables in a converter provide vari-
ous possibilities to change the thermal behavior of the PSDs.
Figure 35 depicts the different control levels, with the gate
driver being the lowest. At this level, the voltage and current
of the drive and gate resistance can be adjusted to revise the
PSD’s switching power loss and temperature. The bandwidth
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at this level is relatively high, around a few microseconds.
The modulation level can be used to control thermal behavior
by adjusting the switching frequency, as shown in Figure 35.
This method can modify the switching and conduction losses
of the PSDs without affecting the converter’s performance.
The bandwidth at this level depends on the switching fre-
quency, around ten to hundreds of microseconds. At higher
levels, thermal control can be achieved by changing the out-
put voltage, the output current, the DC-link voltage, the active
power, and the reactive power. The bandwidth at this level is
quite low, around a few milliseconds.

FIGURE 35. Various control layers to manage the thermal behavior of the
power converters [107].

A. ATC AT MODULATION LEVEL
Switching control methods in power converters influence the
total harmonic distortion (THD) of the output voltage and
current. It also determines the path of the current in the
PSDs. Many switching control methods have been advanced
to reach higher DC-link voltage, lower loss distribution, and
lower THD values [108], [109]. Since the switching control
methods can change the PSDs’ loading, they can enhance
the loss distribution among PSDs, leading to superb thermal
loading and reliability. The switching control method’s effect
on the PSDs’ thermal loading can be described according to
the switching and conduction loss.

1) MODULATION WITH SWITCHING LOSS REDUCTION
Utilizing improved PWM techniques such as DPWM or
declining the carrier frequency can remarkably reduce
switching losses [110], [111], [112], [113], [114], [115],
[116]. However, a trade-off must be considered, as a reduced
number of switching counts can lead to higher current rip-
ples [117]. Declining switching loss in a 2L-VSC is a highly
recognized approach, as seen in Figure 36. DPWM is a
method that is used to decrease switching loss. It involves
clamping the voltage reference of the output to the upper or
lower section of the carrier during specific intervals to main-
tain the related PSDs in their current state without turning ON
or OFF, reducing switching loss during that subinterval. The
process is depicted in Figure 37. DPWM can decline the total
loss of the IGBT, resulting in a lower junction temperature
swing. Figure 37b shows that the conduction loss of the
device can also be altered with DPWM.

FIGURE 36. The 3P-2L-VSC converter: configuration and control
approach [32].

FIGURE 37. The 2L-VSC converter: power loss and junction temperature
measurements [32].

The DPWM is not restricted to the use of 2L-VSCs.
Multi-level converters can also be applied for this end [118].
Reference [116] presents a case study on a 3L-NPC converter,
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in which some various DPWM methods based on optimal
zero sequence injection PWM (OPT-ZSSPWM), such as con-
ventional 60◦ DPWM (CONV-60◦ DPWM) [27], and alter-
native 60◦ DPWM (ALT-60◦ DPWM) [119], are discussed.
It was concluded in [116] that using CONV-60◦ DPWM and
ALT-60◦ DPWM can significantly reduce the thermal stress
on the overheated PSD in the converter [116].

2) MODULATION WITH CONDUCTION LOSS
REDISTRIBUTION
Another approach to modifying the thermal loading is
conduction loss, particularly when it comes to switch-
ing redundancy like the 3L-NPC converter, as shown in
Figure 33 [116]. In a 3-phase converter system with a typical
star connection, introducing a common-mode offset to the
voltage references does not impact the current. However,
it will alter the distribution of conduction loss among the
PSDs. The space vector diagram (SVD) of the 3L-NPC con-
verter, as depicted in Figure 38, indicates that all vectors
located within the inner hex possess switching redundancies.
This provides greater control flexibility to adjust the current
paths flowing through the PSDs for better LVRT capability.

A wide variety of modified and optimized thermal mod-
ulation methods are represented in [48], [49], and [120].
Figure 39 displays the space vector modulation (SVM)
method over one switching period. In this figure, the state
vector 1-1-1 is removed, meaning that the converter state’s
time is declined when current flows via the clamped diode
and associated switch. Figure 40 depicts the outcomes of
the PSD’s temperature in the converter under an extreme
LVRT process. The results indicate that an optimized or mod-
ifiedmodulation sequence leads to more symmetrical thermal
loading and decreased thermal stress on the most stressed
PSDs during LVRT.

FIGURE 38. Switching redundancies in the 3L-NPC converter [32].

B. ATC AT SYSTEM FUNCTION LEVEL
To maintain the desired energy conversion level, this thermal
management level is solely suitable for a limited number
of power converters, as shown in Figure 41 [32]. Thermal
controlling can be attained by recirculating parallel power

FIGURE 39. Modified modulation sequence for higher device temperature
during LVRT [32].

FIGURE 40. PSDs’ temperatures in the 3L-NPC converter under LVRT [48].

FIGURE 41. Active/reactive power routing to balance thermal stress
among converters [32].

converters’ active and reactive power. Regardless of some
drawbacks, such as higher losses in some overloaded power
converters, it is not confirmed whether controlling the PSDs’
losses and temperatures in one of the parallel converters is
feasible.

1) ATC BY REACTIVE POWER
The amount of reactive power a converter can provide is not
necessarily limited to the power at the converter’s input. It can
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significantly affect the loading of elements, so it is an amp
approach to reach the ATC for enhanced reliability. Figure 42,
presented in [31], illustrates the impact of varying reactive
power on the loss distribution of the same 3L-NPC converter.
The figure shows that reactive powermodifies the phase angle
between the voltage and current of the output and alters the
PSDs’ current amplitudes. Furthermore, the reactive power
delivered to the power network is closely connected to its
power stability and voltage level, particularly when it comes
to weak grids with restricted power capacity [121], [122],
[123], [124], [125]. Consequently, many grid codes have been
established to restrict the amount of reactive power injected
by power converters. The mentioned codes can markedly
restrict the thermal control capability that can be achieved by
utilizing the converter’s reactive power.

Figure 43 depicts a doubly-fed induction generator (DFIG)
wind turbine system. The DFIG structure allows for the
support of reactive power from either the stator side or
the grid side converter (GSC) [126], [127]. So, the reactive
power that is being distributed among the DFIG system
is controllable. Figure 43 shows that the amount of reac-
tive power injected into the power grid remains constant,
thereby significantly extending the applicable reactive power
for controlling device temperature, regardless of grid codes.
However, certain restrictions, such as over-modulation, the
current capacity of the PSDs, and DFIG, must also be consid-
ered when implementing this control approach [126]. If there
are increases in the wind speed, these sudden changes in
adverse thermal cycling in the converter. Hence, an appro-
priate reactive power control scheme in a DFIG system can
regulate the swings of junction temperature under such cir-
cumstances. Figure 44 illustrates the basic control diagram
for this approach [126]. The IEC 61400-1:2019 defines a
standard wind gust with a one-year return period. The thermal
cycling of power converters with/without thermal reactive
power control is shown in Figures 45a and 45b, respectively.
Based on Figure 45a, the thermal stress is least severe at a
synchronous wind speed due to the lack of active power in
the GSC and most severe in the rotor side converter (RSC)
due to the small fundamental frequency of the rotor current.
The maximum junction temperature fluctuation in the GSC
declines from 11◦C to 7◦C with extra reactive power, as dis-
played in Figure 45b. However, this fluctuation remains the
same at 18◦C in the RSC.
Likewise, controlling the PSD’s temperature by reactive

power is attainable in a parallel converter-based wind system
with several converters (see Figure 46). Here, the converter is
required to control thrice more power than the wind system
depicted in Figure 43, but with the exact generator capacity.
To cope with this, parallel converters are generally used,
which allow for temperature control of the PSDs by distribut-
ing reactive power within the converters [31]. The results are
shown in Figure 47 where it can be observed that the tem-
perature swings of the overheated PSD can be significantly
decreased, from 32◦C to 12◦C.

FIGURE 42. Distribution of losses in the 3L-NPC converter based on
various reactive power values [31].

FIGURE 43. Junction temperature regulation in the power converter of a
DFIG wind turbine system by implementing reactive power control [126].

FIGURE 44. Thermal control diagram of the converters in the DFIG
system [126].

2) ATC BY ENERGY STORAGE OR ACTIVE POWER
The power converter’s current magnitude is significantly
influenced by the active power, affecting the power semi-
conductor devices’ loss and thermal loading. Unlike reactive
power, controlling the available active power in the converter
is generally not feasible. However, an energy storage sys-
tem (ESS) can be used as an additional source of active
power [128], thereby enabling this control function. The
ESS can be located in the DC-link, as shown in Figure 48,
to reduce thermal excursions in the grid-side converter and
instabilities in power injected into the grid. However, some
challenges associatedwith using ESS include determining the
type of energy storage technology, sizing the ESS appropri-
ately, and evaluating the thermal enhancement provided by
the ESS. The ESS comprises an energy storage device (ESD)
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FIGURE 45. Thermal cycling of the back-to-back power converters in the
DFIG system during abrupt wind speed changes [126].

and a bidirectional power converter. Figure 48 illustrates the
power control method for the ESS [128]. Initially, the wind
turbine’s power production is calculated. Then a high-pass fil-
ter is used to obtain short-term power variations that serve as
a reference for the ESS’s charging power. This helps smooth
out the power flow in the GSC and offers independence in
controlling the wind power converter from the ESS.

Figures 49a and 49b show the power and temperature char-
acteristics of the power converter when combined with the
ESS, respectively. Case 1 has P = 0.05 MW, E = 270 kWh,
and the weight is 1.7 t Li-ion. Case 2 has P = 0.177 MW,
E = 6.25 kWh, and the weights are 1.25 t Ultracapacitor and
0.12 t Li-ion. Case 3 has P = 0.200 MW, E = 2.6 kWh,
and the weight is 0.52 t Li-ion. As per this figure, the power
is smoothed with the help of the ESS. Thus, the thermal
fluctuation is decreased. What is more, the temperature gets
smoother as the ESS becomes larger [128].

FIGURE 46. Reactive power distributing between parallel converters in a
wind turbine system [31].

FIGURE 47. PSDs’ temperatures of the 3L-NPC converter with paralleled
converters during abrupt wind speed changes in the DFIG system [126].

FIGURE 48. Junction temperature control with the integration of ESS and
back-to-back converters in the DFIG system [128].

C. ATC AT OTHER LEVELS
Over the years, other techniques have also been developed
for the ATC of power converters. Active gate control is one
such technique that can regulate the losses of PSDs without
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FIGURE 49. The GSC as per various energy storage capabilities [128].

affecting their functionality. Adjusting the gate drive voltage
allows both losses (conduction and switching) of the PSDs to
decline, thereby reducing the thermal cyclingmagnitude [30].
For example, an active gate driver has been proposed in the lit-
erature to compensate for variations in the on-state resistance
of IGBTs [129]. A different active gate control has been used
to balance currents among parallel-connected IGBTs [130].
Modifying the control parameters of active gate control can
also reduce the thermal cycling in the PSDs.

Changing the switching frequency is another effective
solution for managing the thermal behavior of power devices.
As seen in previous studies, this can be achieved through
linear or hysteresis control [26], [27], [28]. The ATCs used in
these studies have lowered the switching frequency compared
to the uncontrolled system, albeit with an increase in the
current ripple [27], [28].

One approach to managing thermal behavior is to vary the
modulation index using the DC-link voltage, which affects
the loss distribution between IGBTs and diodes [32]. Another
method is presented in [27], where a dynamic current lim-
itation is set to prevent overheating and potential damage
to the PSD. This allows for low-power operation of nearly
overheated systems. In MMCs, specific submodules are sub-
jected to higher thermal stress than others. An algorithm is
suggested in [131] to balance MMC submodules’ junction
temperatures.

It bears noting that almost all ATC methods discussed in
the literature are open-loop and do not rely on temperature
feedback from the device. This is primarily because tem-
perature measurement within PSDs is not straightforward
in real-world applications such as AESs, where high power
densities are involved. The thermal model-based estimation
is a potential solution, but it heavily depends on accurate
models for losses and the thermal behavior of the converter.
These models are still not advanced enough to protect the
converter’s intricate functioning conditions, power device

packaging technologies, and cooling methods. Therefore,
they remain areas of active research.

Table 3 summarizes the most important ATC methods
based on various control levels.

IV. DISCUSSION, CHALLENGES, AND SCOPE OF FUTURE
WORK IN AES POWER SYSTEMS
Several studies have explored open-loop thermal loading con-
trols that do not rely on the device’s temperature feedback.
This is because measuring a PSD’s temperature during the
process is challenging, particularly in high-power-density
applications such as AES power systems. One potential solu-
tion is to use thermal models to predict PSD’s temperature,
but this method heavily relies on the converter’s loss and ther-
mal models’ precision. These areas are currently the subject
of extensive research as existing models are not yet advanced
enough to fully account for the complex operating conditions
of the converter, packaging technologies, and cooling require-
ments and procedures.

Since this work focuses on ATC methods of power elec-
tronics converters specifically for AES power systems, this
section will first discuss and compare various high-voltage
power converters (e.g., multilevel and modular converters)
which shape the concept of power electronics building blocks
(PEBB) in AES power system applications. It is worth point-
ing out that although the thermal management issue may
initially appear simple, considering the moderate heat gen-
eration and available surface area for heat dissipation on
each PEBB, there are two challenging constraints to over-
come. Firstly, direct liquid cooling is impossible for PEBBs,
meaning liquid connections cannot be established. Secondly,
the PEBBs must be easily replaceable by the ship’s crew
while the ship is underway, requiring them to be compact,
lightweight, and resistant to physical damage. A large finned
air-to-air heat exchanger is out of the question. These con-
straints pose a significant challenge in transferring heat from
the PEBBs to the corridor, as these limitations render many
existing electronics cooling technologies ineffective.

Then this section will explain how the ATC methods
reviewed so far can be applied and improved in the PEBBs
concept for AES power systems. Next, future research oppor-
tunities in the ATC methods will be presented because they
are pivotal to considering other possible scenarios for future
design.

A. THERMAL CONTROL OF PEBBS CONCEPT
Newly emerging materials, components, and system con-
cepts; such aswide bandgap (WBG)materials, silicon carbide
(SiC) based PSDs, PEBBs, and integrated power systems;
have been, are, and will continue to enable future marine
systems as different from today’s systems as steamships
were to sailing ships [132]. Shipboard electric power sys-
tems benefit from the progress made in power converters,
which are supported by many different elements, subsystems,
and system technologies [133]. One notable technology is
the PEBB, which was initially conceptualized and proposed
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TABLE 3. Summary of important ATC methods based on control levels.

by the US Office of Naval Research (ONR) in 1998 as
a means of enhancing the availability, performance, and
cost-effectiveness of converters in future AESs [134], [135].
Implementing the PEBB concept has dramatically impacted
the innovation, manufacturing, commissioning, and operation
of converters in AES applications [136].
Similar to Figure 35 in which different control layers

for managing the thermal behavior of single converters
were highlighted, one must understand the control layers
of the PEBBs concept to control the thermal behavior of
high-voltage power converters in large-scale applications
such as AES power systems. These layers are shown in
Figure 50 [136]. Figure 51 depicts an AES power system
composed of several power electronics converters [137],
which has become bigger and more complicated. In this
regard, various advancements, including grid configuration
and topology, voltage stability analysis, power quality, fault
detection, and protection, have been made [138], [139].
To advance thermal management, power ratings, cost-
effectiveness, availability, and total performance, various
cutting-edge topologies over traditional VSCs have been pre-
sented. Some of them have already been implemented in the
AESs.

1) MULTI-LEVEL CONVERTERS (MLC)
Unlike the basic VSC, MLCs are power converters that gen-
erate AC voltages using more than two DC voltage levels.
MLCs offer various benefits, including reduced AC ripple,
lower voltage stress on both the PSDs and loads, and a higher

FIGURE 50. Control hierarchy in PEBBs concept [136].

effective switching frequency. A great variety of MLCs, such
as the NPC multi-level converters (NPC-MLC), the flying
capacitor multi-level converters (FC-MLC), the CHB multi-
level converters (CHB-MLC), and MMCs have been recently
presented [140], [141], [142]. The NPC-MLC is advanta-
geous in terms of high-power density since it has minimal
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FIGURE 51. An AES power system with zonal distribution (podded
propulsors) [137].

needs for passive components. On the other hand, CHBs and
MMCs have modular structures, offer FRT capability, utilize
low-voltage PSDs, and possess high efficiency and low quan-
tization on the voltage and current. Still, they require many
capacitors and have lower power densities. A thorough study
of MLCs and their implementation in various fields, includ-
ing renewable energy systems, EVs, and charging stations,
has been conducted in a comprehensive review published
in [143]. The work showed that MLCs offer lower THD
values, lower distortion in input current, and lower switching
frequency, thereby lower switching losses. On the flip side,
having many components results in lower reliability, higher
cost, and more complicated controllers.

The authors in [71] presented an ATC method of hybrid
MMC under overmodulation operation. The ATC was
introduced for half-/full-bridge submodules. Two kinds of
bypassed switching modes were modified in full-bridge sub-
modules to produce a symmetrical switching arrangement
when the leg voltage was positive. The same procedure is
applied when the voltage of the leg is negative. While the
power loss distribution in full-bridge submodules is more bal-
anced, the symmetrical switching arrangement does not neg-
atively affect the performance, decreasing thermal stress on
the most highly stressed devices. Reference [144] proposed
an implementation of the NPC-MLC based on a switching-
cell array method, adding redundant conduction paths on one
side and more options to distribute the switching losses on

the other. This way, the converters’ temperature distribution
is balanced, reducing thermal stress and improving reliability.

Reference [69] presents an approach to incorporate the
junction temperature into the capacitor voltage balancing
algorithm, called nearest level modulation (NLM), to achieve
uniform thermal distribution among the submodules. Unlike
the research in [67], the temperature of the devices within
the submodule is combined individually with the dedicated
capacitor voltage, resulting in different distinct cost func-
tions for the upper/lower IGBTs and upper/lower diodes. The
appropriate cost function is chosen for each sampling instant,
considering the current direction in each leg and the need to
either insert or bypass submodules. The outcomes indicated
that the suggested approach significantly reduced the incon-
sistency and temperature dispersion among the submodules.

A quasi-two-level FC-MLC for PEBBs was presented
in [145]. the results showed that the temperature distribution
and the measured heat sink temperature are both improved.

2) MULTI-PHASE CONVERTERS
AES power systems typically utilize power converters that
have a 3-phase input or output topology. However, using
multi-phase motors with more than three phases can improve
propulsionmotors’ power ratings and FRT capability. In addi-
tion to providing modularity and redundancy in the struc-
ture, using multi-phase converters can also result in lower
common mode voltages, which is advantageous for motors
and reduces the need for filters. Reference [147] discussed
the modeling and control of VSCs associated with different
multi-phase power electronics converter topologies, primar-
ily deployed in multi-phase electrical machines. For instance,
multi-phase converters play a crucial role in marine appli-
cations, where FRT capability, efficiency, and noise are the
pressing issues [148]. Reference [149] studied the progress
of modern AESs in terms of propulsion drive motors, such as
PMSMs, induction machines (IMs), high-temperature super-
conducting synchronousmachines (HTSSMs), and supercon-
ducting homopolar DC machines (SHDCMs).

3) SOFT-SWITCHED CONVERTERS
DC/DC power converters usually have resonant features that
enable zero-voltage switching (ZVS) or zero-current switch-
ing (ZCS) to decrease switching losses and increase the
switching frequency. Some soft-switching topologies for 3P
AC power converters have been proposed by incorporating
auxiliary circuits like 2L-VSCs, 3L-NPCs, and active neutral-
point-clamped (ANPC) converters [150]. However, despite
the advantages of each topology, soft-switched converters
have not been widely adopted in practical applications due to
the added complexity, cost, and restricted benefits for drives,
where high switching frequencies and fast dynamics are not
necessary. A soft switching converter for AESs has been
proposed and experimentally verified in [151] and [152],
respectively. The proposed converter offers high power den-
sity and efficiency, minimizing switching power losses.
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TABLE 4. Advantages and disadvantages of different VSC configurations [140], [146].

Reference [153] presented an impedance-source inverter
rather than traditional VSCs for ship systems. The results
showed that the proposed configuration offers lower voltage
stress on the elements and higher reliability.

Table 4 summarizes the most used MLC topologies and
their advantages and disadvantages. Figures 52a, 52b, 52c,
52d, and 52e illustrate the leg schematic of various MLC
configurations such as NPC-MLC, FC-MLC, ANPC-MLC,
CHB-MLC, and MMC, respectively.

4) PEBBS CONCEPT
ONR introduced the concept of PEBB in the mid-1990s
to tackle the issues related to power electronics converters,
such as cost, availability, design, and operation intricacy.
According to [137], the PEBB is a method of building power
electronics that uses a standardized approach with modules
that can be readily configured to satisfy different applica-
tions’ specific hardware/software requirements. It includes
various blocks such as power processors for single or multiple

phases, gate drives, sensors, signal converters for sensors,
switching or gate drive control blocks, and communication
blocks for interacting with controllers and with one another.

The PEBB concept seeks to enable dramatic enhancements
in the performance, reliability, and cost-effectiveness of elec-
tric energy processing systems by developing an approach
to the creation and manufacturing of power electronics sys-
tems based on the integration of a set of building blocks
with (1) integrated functionality, (2) standardized interfaces,
(3) suitability for automated manufacturing and mass pro-
duction, and (4) application versatility [154]. As mentioned
in [137], ‘‘each PEBB includes built-in self-protection against
voltage surges, overvoltage and undervoltage, fault currents,
ground currents, internal faults, overloads, and overtem-
perature.’’ The PEBB concept is designed to include stan-
dard interfaces, modularity, and integrated functionalities to
enhance power electronics converters’ performance, reliabil-
ity, and cost-effectiveness. AES power converters have power
ratings ranging from tens to hundreds of kilowatts at low
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FIGURE 52. Leg schematic of different MLC configurations [140], [146].

voltages (<1 kV) to tens of megawatts at medium voltages
(1 kV < & <13.8 kV), as shown in Figure 51. The PEBB
approach is used in industrial power converters and is well-
suited for AES and other ship systems. Using PEBBmodules
can simplify the development of power converters for various
complicated applications.

Despite their high power-conversion efficiency, the heat
dissipated by these PEBBs poses serious thermal challenges,
meaning that the thermal aspects of the PEBBs concept
in AESs deserve more intense scrutiny to complement the
improved electrical performance by providing proper cool-
ing in all conceivable scenarios. Traditional PEBB cool-
ing strategies include heat sinks, direct liquid cooling, and
heat pipes. Reference [155] presented an in-depth review of
traditional and recent electronic cooling techniques appli-
cable to PEBBs. Nonetheless, the design requirements and
limitations imposed on the PEBBs concept in AESs, par-
ticularly in pursuit of shipboard power corridor [156] to
which the PEBBs may be allotted, can place limitations
on the application of conventional cooling methods. The
power corridor’s concept presents extra design constraints
like compactness for the PEBBs. Many cooling strategies
apply to the shipboard PEBBs, such as PEBB 1000 and
PEBB 6000 [157].
A high-power 57.6 kW PEBB with 1.2 kV DC-link and

1.7 kV SiC MOSFET modules is presented in [158] in which
the selection of DC-link capacitors is proposed to control the
thermal behavior of the PEBBs concept. The results showed
that the temperature rise of SiC modules was low. Refer-
ence [159] proposed a dynamic electro-thermal approach
through an iterative algorithm for the PEBB concept. The pro-
posed approach improved the power loss distribution model,
which has temperature-dependent self-improvement ability
and an effective thermal model providing a fast temperature
calculation.

Depending on failures and the effectiveness of ATC meth-
ods, the PEBB stacks are prone to degrade due to aging and
environmental stresses. Therefore, degradation is inevitable.

To avert this, the lifetime of the PEBB must be assessed
so that maintenance works can be planned ahead. Refer-
ence [160] proposed a component stress study to estimate the
RUL of the PEBB. Reference [161] presented the concept of
a standardized switching cell as an additional building block
in converter optimization procedures. It is based on modeling
a half-bridge arrangement to improve efficiency, volume, and
thermal performance.

In [162], the authors tested and simulated 10 kV, 120 A
all SiC half-bridge modules for use in a 4 kV, 100 A
PEBB. In [163], an Impedance Measurement Unit (IMU) for
1 kVDC/800 VAC systems with an impedance measurement
range from 10 Hz to 1 kHz has been proposed. The IMU
remarks a reconfigurable, modular, and scalable structure
capable of shunting current and series voltage injectionmode.
The core control of the perturbation injection unit was applied
as per a distributed control scheme. The IMU is built with
PEBB units and uses 1.7 kV SiC metal oxide semiconductor
field effect transistor (MOSFET) modules. Reference [164]
describes the development, manufacturing, and preliminary
testing of a 1.7 kV SiC switching cell intended for use in a
250 kW integrated PEBB (iPEBB). In [165], a full-bridge
PEBB was produced, which includes all ancillary circuits.
The individual PEBB is rated for 6 kV operation, but the
insulation design of critical systems allows a common mode
voltage of up to 30 kV in an MMC. Similarly, a rapid PEBB
thermal management tool, vemPEBB, has been proposed
in [166] to tailor multi-fidelity PEBBmodelingwithin the set-
based design framework. An isolated gate drive power supply
for a 5 kV full bridge PEBB consisting of 4Austin SuperMOS
devices has been developed in [167].
PEBBs concept is a practical solution in developing AES

power systems with improved reliability, modularity, scala-
bility, FRT capability, lower production, and lower mainte-
nance costs. Figure 53a represents the open plug-and-play
architecture of the PEBB concept that can be seamlessly
integrated into various applications and automatically con-
figure all its operational settings, eliminating the need for
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FIGURE 53. PEBBs concept.

manual adjustments. When the PEBB is plugged into, the
host application would immediately detect its presence, spec-
ify the producer, and initiate the automatic operation. Each
power processing unit within the PEBB would indepen-
dently control its own parameters for safe operation. The
PEBB can be utilized in various applications using stan-
dardized interfaces and protocols. These characteristics con-
tribute to cost reduction in defense and commercial sectors
[168], [169]. Also, as depicted in Figure 53b, the PEBBs
concept offers power converter configurations as modular
systems shaped by many submodules connected in series,
parallel, or series/parallel [168]. Figure 54 shows some
state-of-the-art modular converter configurations based on
PEBBs as follows: Series-connected configurations such as
CHB for motor drives and MMC for High-Voltage Direct
Current (HVDC) systems, parallel-connected configurations
such as multi-string PV systems and wind power systems,
and series/parallel configuration such as ST systems, and
most importantly, AES power systems, as illustrated in
Figures 54a, 54b, 54c, 54d, 54e, and 54f, respectively. Plus,
Table 5 provides a summary of future opportunities for ATC
in different PEBB applications.

B. COMMUNICATION PROTOCOLS OF PEBBS
One important aspect of ATC in PEBBs concept is the
communication protocols with which the data is transferred
between PEBBs. This can play an even more critical role
in the ATC if the thermal-related data can be communicated
faster and more precisely. As discussed previously, the most

efficient type of PSD is the SiC which increases the switching
frequency to around 10-20 kHz. Thus, a short cycle time
in the microsecond range is vital. This stresses the grow-
ing need for a high-speed data transmission communication
protocol. Over the years, various communication protocols
for power electronics converters have been proposed [171],
[172], [173]. The author in [174] established the primary
criterion for communication in power electronics converters:
simplicity, real-time communication, data rate, high-speed
data transmission, data update cycles, synchronization, reli-
ability and availability, redundancy, diagnostics, security,
configuration, scalability, and reconfigurability.

PEBBs offer the plug-and-play architecture for vari-
ous large-scale applications, providing a network with
primary/secondary infrastructure. Several communication
protocols have been proposed over the years [171], the impor-
tant ones are controller area network (CAN) [175], serial real-
time communications system (SERCOS) [176], motion and
control ring optical (MACRO) [177], [178], [179], which is
also an Ethernet communication protocol, MACRO and fiber
distributed data interface (FDDI) to form power electron-
ics system network (PESNet) [177], [180], PESNet 1.2 and
2.2 as the very two first communication protocols gener-
ated PEBBs [181], process field bus (PROFIBUS) [182],
serial peripheral interface (SPI) [183], ethernet for con-
trol automation technology (EtherCAT) which interestingly
most of the researchers have lately zeroed in on because
of real-time capabilities, synchronization performance, fault
diagnostics [184], process field net ssochronous real time
(PROFINET IRT) [184], Ethernet PowerLink and Ether-
net/IP [185], synchronous-converter-control-bus (SyCCo-
Bus) [186], and RealSycho [187]. A good comparison
between PESNet and SyCCo-Bus protocols has been pre-
sented in [188].

Some new communication protocols have been recently
proposed, such as PESNet 3.0 [189]. In this paper, the com-
parison of the minimum cycle time between EtherCAT and
PESNet 3.0 communication protocols has been drawn, and
the results showed that, as opposed to EtherCAT, the inner-
loop control bandwidth could be boosted in PESNet 3.0.
In [190], a distributed communication and control system
(DCCS) for high-frequency large-scale modular IMUs with
tight synchronization and low latency has been presented
for improving PEBBs’ modularity and scalability. Refer-
ence [191] demonstrated a power converter structure that
utilizes data transmission between nodes like gate drivers
and sensors, enabling a more flexible and distributed con-
trol methodology. Reference [192] proposed PESNet 3.0 for
high-power SiC MMCs in which the white rabbit net-
work (WRN) is embedded in PESNet 3.0. For the first
time, the WRN has been used in the power electronics in
this paper, and the outcomes showed that it could remove
the sync error (SE) restrictions of field-programmable gate
array (FPGA).
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FIGURE 54. State-of-the-art modular converter configurations using PEBBs concept.

TABLE 5. Future opportunities for ATC in different PEBB applications.

Moreover, some research has been carried out to provide
wireless data transmission for communication [193]. Focus-
ing on the PEBBs concept, [194] tests 5G/6G networks for
PEBBs, and the results validated that the delay in data transfer
can be enhanced by higher integration of the wireless commu-
nication module in the control board.

C. THERMAL DATA COLLECTION
A major difficulty in the ATC method is deriving thermal
state variables, like the junction temperature. To this end,
many solutions have recently been put forward that pro-
vide higher accuracy and broader bandwidth than traditional
methods [195], [196], [197], [198], [199], [200]. Although
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some of these solutions can address the issue to some extent,
they are mostly inexpensive to implement and lack high
signal-to-noise ratios and low sensitivity to external fac-
tors [200] and degradation [201]. Furthermore, temperature
sensing is inadequate per se to have all the capabilities ATC
can offer. The reasonwhy is that the desired filter brings about
phase lag. Although thermal predictors offer an affordable,
locally resolved, and zero phase lag option for determining
temperature, the model errors restrict their precision for com-
plex calibration and degradation, which are not considered.
Therefore, thermal observers graft the advantages of both
solutions into one another by incorporating temperature sen-
sor data into a closed-loop control system to reduce real-time
model errors of the thermal estimator, as described in various
studies including [27], [202], and [203].

D. STATE-OF-HEALTH (SOH) AND DEGRADATION
Many works have focused on degradation forecasting of
distribution management systems, which include different
types of EVs and batteries, to improve overall reliability
by reducing the degradation rate of each component [204],
[205], [206]. The operating condition of the components
impacts the degradation process [207]. The degradation of
the components results in decreased capacity, reducing the
system’s performance and increasing the reliability concern
[208], [209]. The same concept of degradation analysis will
be invaluable in power electronics converters since accurately
predicting the SoH and the progression of damage is crucial
for implementing thermal control in power converters for
maintenance purposes. It is important to note that without
sufficient data on the components’ RULs, it is difficult or even
incorrect to use power routing, which could ultimately reduce
the system’s reliability.

To create the modules’ lifetime models, the thermal cycle’s
data, such as its damage, is gathered linearly [210], [211].
On the one hand, researchers have recently found that aging
is non-linear. Therefore, they conducted experiments com-
paring newly manufactured power modules with pre-aged
ones. The findings suggested that the new modules did
not experience aging under identical thermal stress. On the
other hand, the pre-aged modules showed a continued rise
in thermal resistance related to aging. Based on the out-
comes, a physics-based lifetime model was created [212].
It should be mentioned that the data creation for the feature
of these lifetime models is not straightforward. Real-time
power cycling data is essential for temperature-based lifetime
models closely connected to various failure mechanisms. The
models can only be generated by tracking plastic strain, which
is a cause of damage to the modules, throughout a specific
operating time. The research to obtain strain from modules
needs further development [213], [214].

E. COST ANALYSIS
This technology raises significant concerns regarding
the reliability of power electronics and the associated

maintenance costs. The costs can be minimized by mon-
itoring and controlling the lifespan of PSDs [263], [264].
However, addressing these challenges is not a simple task,
as it requires understanding power device physics, effectively
managing electrical variables, and developing optimal plans
and schedules for maintenance.

To the best of the authors’ knowledge, no comprehensive
analysis has been conducted on the cost of power con-
verters when employing ATC methods. While the literature
emphasizes the cost reduction associated with these methods,
no specific cost analysis or numerical comparison has been
performed. An improved ATC method offers several advan-
tages. Firstly, it enables the use of narrower safety margins,
leading to enhanced reliability, increased availability, and,
usually, cooler systems. Secondly, it reduces the expenses
incurred from unscheduled maintenance. Unscheduled main-
tenance can result in lost revenue and system unavailabil-
ity, which become critical factors as operational demands
increase and financial resources are limited. Therefore, devel-
oping a cost-effective ATC method that considers the SoH
and degradation of power converters is crucial to optimize
maintenance costs [84].

From a cost reduction perspective in the context of the
PEBB concept, adjusting the ATC of converter devices based
on the thermal behavior of PEBB stacks is advantageous. This
is because if a single PEBB fails, only a direct replacement is
required to maintain proper power system operation. Imple-
menting ATC and RUL methods facilitates this capability,
allowing PEBBs to adapt their operation to align with sched-
uled maintenance, thereby increasing the cost-efficiency of
planned maintenance tasks. Essentially, designing an effec-
tive ATC method with SoH and maintenance schedule will
allow replacing system components when their failure proba-
bility reaches the maximum limit. This modification of ATC
with SoH and RUL estimation will guarantee that the failure
is always detected, simplifying maintenance scheduling and
reducing associated costs [170].

In recent works [265] and [266], a comprehensive review
was presented, highlighting the latest developments and
emerging trends in technologies and approaches aimed at
improving the dependability of power electronics systems.
The authors discussed advancements across various levels,
encompassing power electronics topology, control strate-
gies, condition monitoring techniques, and digital-twin sys-
tems. They compared various FRT methods for full-bridge
isolated DC/DC converters, including cost and number
of elements.

F. REDUCING THE EFFECT ON THE OPERATION OF
THE SYSTEM
The use of ATC methods offers an additional capability for
PSDs and allows for altering the PWM frequency or system
process to protect the PSDs from overtemperature damage.
Although these methods have a negligible impact on sys-
tem function under regular conditions, they can significantly
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TABLE 6. Some important classifications and future outlooks to help ATC of PEBBs concept in AES power systems.

affect system operation when thermal limits are approached.
All conditions must be considered to mitigate this effect,
but protection against thermal damage stays reliable. The
work presented in [219] is a good example. In this study,
the maximum peak current of a traction inverter could be
doubled to around 200% based on the operating point and
not surpassing the maximum junction temperature. This was
due to the decaying thermal impedance frequency response
as the frequency went up.

G. PSD TECHNOLOGY AND PACKAGING

ATC methods are becoming increasingly vital in new PSD
technologies and packaging. However, it also presents new
challenges. WBG semiconductors such as SiC and gallium
nitride (GaN) have smaller footprints and thicknesses than

their silicon (Si) equivalents while keeping the same dielec-
tric strength [267], [268]. This makes it possible to create
more compact power electronic converters [269]. However,
due to the smaller size of the PSDs, their thermal capac-
itance is lower, resulting in increased thermal/mechanical
stress due to higher thermal cycling. This means that the
lifetime of WBG-based power modules is more affected by
thermal cycles than Si PSDs. Passive methods have been
proposed to reduce the thermal cycling of WBG devices by
using thermal buffers to increase adequate thermal capacity
without degrading the thermal path [270]. As the method
brings about a more complicated module packaging, the ATC
is an effective method for the lifetime extension of WBG
semiconductors [230], [271], [272], [273].
Although ATC using WBG devices has several advan-

tages, there are significant challenges in obtaining accurate
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measurement and high-bandwidth junction temperature data.
With WBG semiconductors, various temperature-sensitive
electrical parameters (TSEPs) that can be obtained from high
bandwidth are not applicable in the same way as with Si
devices or require a more intricate circuit for data collection.
This issue has been discussed in several research papers,
including [197], [198], [201], [274], and [275].

The ever-growing use of WBG semiconductors has revo-
lutionized module packaging to improve the deployment of
enhanced electrical features, unlike Si devices. Bond-wire-
free transfer-molded power modules with lead frames are
used to increase integration density, which can withstand
higher thermal stress than soft silicone encapsulation mod-
ules. However, suchmodules still experience thermal cycling-
induced aging effects, such as delamination of the chip from
the lead frame and mold cracking [276], [277]. Recent solu-
tions, such as board integration of PSDs, have been presented
to decrease switch cell inductance and enhance system inte-
gration. Still, they can degrade the semiconductors’ thermal
path, leading to increased thermal cycling [278]. Hence, using
ATC methods dramatically improves the reliability and life-
time of future packaging of WBGs.

Table 6 summarizes some hot research spots and radical
challenges for future work.

V. CONCLUSION
The ATC method is used to improve the performance and
reliability of a power converter by regulating its thermal
behavior through control techniques. The main objective of
the ATC techniques is to lower the average temperature and
swing amplitude in PSDs. The main highlights of this paper
are as follows:

1) The ATC methods in different converter configura-
tions; such as single configurations (two-level, three-
level, multilevel converters), parallel configurations,
cascaded configurations, and modular configurations;
have been reviewed, and a detailed comparison has
been provided.

2) A brief overview of the most commonly used thermal
networks and their comparison has been provided. The
mathematical and theoretical principles of these net-
works deserve a separate review paper.

3) The ATC methods with the power routing approach
have been presented. There are no papers related to
power routing for single configurations because it does
not apply to them. Butmany papers propose the optimal
power distribution between modular power converters.

4) Different layers of thermal control based on various
bandwidths have been discussed in detail. The layers
include the modulation level (e.g., modulation with
switching power loss reduction, modulation with con-
duction loss redistribution), the system function level
(e.g., controlling reactive power, active power, or ESS),
and other levels (e.g., active gate control, switching fre-
quency, manipulation of the loss distribution between

IGBTs and diodes). And a detailed comparison of dif-
ferent control layers has been provided.

5) Next, the PEBBs concept has been introduced and
discussed. So far, various ATC methods have been
presented based on control levels, configurations, and
modulations. After that, the discussion continued with
the PEBBs concept and the most important con-
verter configurations to form PEBBs stacks, such as
NPC-MLC, FC-MLC, ANPC-MLC, CHB-MLC, and
the most important one, MMC. The MMC configura-
tion is the best candidate for the PEBBs concept tomeet
AES power systems’ requirements, such as modularity,
scalability and simplicity in structure, hot-swapping,
redundancy, low filter requirements, and lower quan-
tization on current and voltage. The advantages and
disadvantages of each one of these configurations in the
PEBBs concept have been presented.

6) Having several MMCs for shaping PEBB stacks raises
thermal stress. Hence, a precise yet cost-effective ATC
method is very much needed to control the thermal
behavior of the PEBBs concept. Since research has
yet to be carried out on thermal control of the PEBBs
concept, this paper tried to explain the whys and the
wherefores of implementation of the ATC methods
discussed in this paper to this concept. Also, the com-
munication protocols that help the ATCmethods in this
concept have been briefly discussed, which must be
improved for better data acquisition. This helps transfer
thermal-related data of each PEBB stack, leading to
better health monitoring.

7) Finally, a very detailed scope of future work is pre-
sented with categorized recent papers of different areas
where improvements can/must be made in the PEBBs
concept. Also, some future work perspectives, such
as thermal data collection, state-of-health, degradation
forecasting, cost analysis, PSD technology, PSD pack-
aging, etc., have been proposed.

This work was investigated in a timely and comprehensive
manner. It will serve as a comprehensive and useful reference
for thosewho areworking on controlling the thermal behavior
of power converters and how these methods can be employed
in different applications such as PEBBs concept in ship power
systems, aircraft, motor drives, HVDC, wind power systems,
multi-string PV systems, ST systems, etc.
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