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a b s t r a c t

In this paper, we study the stabilization properties of Continuous/Discrete switched systems using
the dwell time approaches. The considered system switches between a continuous-time subsystem
evolving on time intervals with variable lengths and a discrete-time subsystem with variable discrete
step sizes. Since the time domain is non-uniform, and the stability of the discrete-time subsystem
with variable discrete step sizes does not depend only on the dynamic of the system, but also on the
length of the discrete steps, the usual conditions of dwell time approaches may not be applicable to
stabilize this special class of switched systems. Motivated by that, stabilizing dwell time and average
dwell time conditions are derived by introducing the time scales theory and numerical examples are
proposed to illustrate the effectiveness of the proposed methods.

Published by Elsevier Ltd.
1. Introduction

A wide range of physical and engineering systems involve
oupling between continuous dynamics and discrete events. Sys-
ems in which these two kinds of dynamics interact are called
witched systems. Switched systems consist of a finite number
f different modes subject to a discrete rule that orchestrates
he switching law between them. The stability issue is the main
oncern in the field of switched systems, which have been widely
tudied in the literature and have attracted much attention (De-
arlo et al., 2000; Liberzon, 2003; Lin & Antsaklis, 2009). It is
nown that even if the switched system is fully composed of
table modes, it is still possible to have a divergent trajectories
aused by the failure to absorb the energy increase caused by the
witching, except for some special cases, under some algebraic
onditions (Narendra & Balakrishnana, 1994; Zhai et al., 2006).
n the other hand, in the presence of unstable modes, if one
ither stays too long at or switches too frequently to the unstable
ubsystem, stability may be lost. In these cases, the switched
ystem can be stabilized under an appropriate switching law.

✩ This work has been supported by the National Science Foundation, USA
under the Grant ECCS-1711432, and in part by the Engineering Research Center
Program of the National Science Foundation, USA and the Department of Energy,
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The appropriate switching signals in time domain is determined
by the dwell-time or average dwell-time switching. It is shown
that if one switches less frequently, one may trade off the energy
increase caused by switching (or unstable modes), and maintain
the stability of the system, which means that the dwell time (or
in average) between any consecutive switching have to be no
smaller than a constant τa > 0. This concept has been stud-
ied for continuous-time switched systems, extended to the case
where both stable and unstable subsystems coexist (Hespanha &
Morse, 1999; Liberzon, 2003; Xiang & Xiao, 2014; Zhaoa et al.,
2012). The dwell time results were extended to the discrete-
time switched systems in Geromel and Colaneri (2006), Zhai et al.
(2002), Zhang et al. (2014), Ren et al. (2017). Most of the existing
results are concerned with switched systems operating on the
continuous or discrete uniform time domains separately. How-
ever, in several areas of engineering applications, there are many
situations when the switched system is composed of continuous-
time and discrete-time subsystems, such as communication fail-
ures in networked control systems, where the information is
exchanged over some disconnected time intervals due to unre-
liable communication channels. A cascaded system composed of
a continuous-time plant, a set of discrete-time controllers and
switching between them is also an example. In this situation
the time domain is neither continuous nor uniformly discrete. To
extend the existing results for systems evolving on a non-uniform
time domain, time scales theory was introduced. This theory
unifies between continuous-time and discrete-time analysis that
allows to study the stability and control of dynamical systems
on an arbitrary time domain (discrete with variable steps or a

combination between discrete and continuous times) (Bohner
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Peterson, 2001). The stability of dynamic equations on time
cales has been investigated in Potzsche et al. (2003), Peterson
nd Raffoul (2005), Du and Tien (2007). Switched systems on an
rbitrary time scales have been studied and generalized in Davis
t al. (2010), Eisenbarth et al. (2014). In this work, we are inter-
sted in a special class of switched systems, where the system
witches between continuous-time subsystems evolving on vari-
ble length intervals and discrete-time subsystems with variable
iscrete-step sizes. Such time domain is non-uniform, therefore,
t is necessary to derive new conditions to establish stability
or this class of switched systems by introducing the time scale
, formed by a union of disjoint closed intervals with variable
engths and gaps. This special class of switched systems was con-
idered in Taousser et al. (2014), Taousser et al. (2015b), Taousser
t al. (2015a), where conditions have been derived to guarantee
he exponential stability. This class of switched systems has been
ntroduced in the study of the problem of multi-agent systems
ith intermittent information transmissions in Taousser et al.
2016), and in the modeling of intermittent hormone therapy for
rostate cancer in Higgins et al. (2020). However, in all these
orks, the time scale T is supposed to be known and given

n advance. Motivated by that, we are interested in deriving a
tabilizing switching rule of this class of switched systems via
well time conditions. Notice that, when the discrete step size
s variable in time, the stability of the discrete-time subsystem
epends strongly on the size of the discrete steps, which should
e confined by a pair of upper and lower bounds to guarantee its
tability. In this case, the existing results of dwell time approaches
annot be applied. Therefore, it is necessary to derive new dwell
ime conditions to establish stability for this class of switched
ystems by introducing the time scales.
In this paper, new stabilizing switching law are derived using

well time approaches in time scales theory. Numerical exam-
les show the effectiveness of the proposed methods, and an
pplication to a consensus problem for multi-agent systems with
ntermittent information transmission is provided.

. Preliminaries and problem statement

.1. Preliminaries on time scale theory

In this subsection, we recall some basics on time scale theory
see Bohner and Peterson (2001)) and derive a proposition to
haracterize the time scale exponential function.
A time scale T is a nonempty closed subset of R. We define the

orward jump operator σ : T → T by σ (t) = inf{s ∈ T : s > t},
nd the backward jump operator ρ : T → T by ρ(t) = sup{s ∈ T :

s < t}. The mapping µ : T → R+, called the graininess function, is
defined by µ(t) = σ (t)− t , which measure the distance between
two consecutive times. A point t ∈ T is called right-scattered if
σ (t) > t , right-dense if σ (t) = t , left-scattered if ρ(t) < t and
left-dense if ρ(t) = t . The set Tκ is defined as follows: if T has a
left-scattered maximumm, then Tκ

= T−{m}; otherwise Tκ
= T.

Let f : T → R, the ∆-derivative of f at t ∈ Tκ is defined as

f ∆(t) = lim
s→t

f (σ (t)) − f (s)
σ (t) − s

.

One can notice, if T = R, σ (t) = t and f ∆(t) = ḟ (t), which
s the euclidian derivative of f ; and if T = hZ, σ (t) = t + h,
hen f ∆(t) =

f (t+h)−f (t)
h . So using time scale theory, the theory

f differential and difference equations is unified. A function f :

T → R is said to be rd-continuous, if it is continuous at right-
dense points in T and its left limit exists at left-dense points in
T. A function p : T → R is regressive if 1+ µ(t)p(t) ̸= 0, ∀t ∈ Tκ .
We denote the set of regressive and rd-continuous functions by R
and by R+, if they satisfy 1+µ(t)p(t) > 0, ∀t ∈ Tκ (i.e., positively
2

regressive functions). Similarly, a function matrix A : T → Rn is
called regressive, if and only if (I + µ(t)A) is invertible ∀t ∈ T, or
equivalently A is regressive if and only if all its eigenvalues are
regressive. The set R together with the circle addition ⊕ defined
by (p ⊕ q)(t) = p(t) + q(t) + µ(t)p(t)q(t), p, q ∈ R, t ∈ T is
an Abelian group. The inverse element is ⊖p(t) =

−p(t)
1+µ(t)p(t) and

he circle subtraction is defined by (p ⊖ q)(t) = p(t) ⊕ (⊖q(t)) =
p(t) − q(t)
1 + µ(t)q(t)

. Note that if p, q ∈ R, then ⊖p, p⊕q, p⊖q, q⊖p ∈ R.

For h > 0 let the Ch := {z ∈ C : z ̸=
−1
h }, and for h = 0,

C0 := C. Define, for z ∈ Ch, the function ξh(z) :=
1
h log(1 + hz),

and for h = 0, ξ0(z) := z. The generalized exponential function of
p ∈ R on the time scale T is expressed by

ep(t, s) = exp
(∫ t

s
ξµ(τ )(p(τ ))∆τ

)
for s, t ∈ T,

and the ∆-integral is used (see Bohner and Peterson (2001)). In
particular, for T = R, ep(t, t0) = e

∫ t
s p(τ )∆τ and for T = hZ,

ep(t, s) =
∏t−h

τ=s(1 + hp(τ )). The exponential function has the
properties, for p, q ∈ R, t, s ∈ T:

ep(t, s) =
1

ep(s, t)
= e⊖p(s, t), ep(t, s)eq(t, s) = ep⊕q(t, s).

Let A ∈ Rn×n be a regressive matrix, the generalized exponential
function eA(t, t0)x0 is the unique solution of

x∆(t) = Ax(t), x(t0) = x0, t0 ∈ T. (1)

System (1) is exponentially stable on T, if there exists a constant
β ≥ 1 and 0 > λ ∈ R+, such that the corresponding solution
satisfies

∥x(t)∥ ≤ β∥x0∥eλ(t, t0), ∀t ∈ T.

This characterization is a generalization of the definition of ex-
ponential stability on R or hZ. More specifically, the condition
0 > λ ∈ R+ is reduced to λ < 0 for T = R, and to 0 < 1+µ(t)λ <
1, ∀t ∈ T for any discrete time scale T with graininess function
µ(t). Since eλ(t, t0) can be negative, the positive regressivity of λ
is needed (see Bohner and Peterson (2001)). To study the stability
of linear dynamical systems on time scale T, a particular open set
of the complex plane called the Hilger circle is defined for all t ∈ T
as

Hµ(t) :=

{
z ∈ C : |1 + zµ(t)| < 1, z ̸= −

1
µ(t)

}
.

When µ(t) = 0, we define H0 = {z ∈ C : ℜ(z) < 0} =

C−, the open left-half complex plane. The smallest Hilger circle
(denoted Hmin) is the Hilger circle associated with µ(t) = µmax =

upt∈T µ(t). A regressive constant matrix A is called Hilger stable
f spec(A) ⊂ Hmin (i.e., all eigenvalues of A are in Hmin) (Gard &
offacker, 2003).

heorem 1 (Potzsche et al., 2003).
Let a regressive constant matrix A ∈ Rn×n. There exists an

nvertible matrix Q ∈ Cn×n such that, the generalized exponential
unction of A is given by

A(t, s) = Q

⎛⎜⎝ eJ1 (t, s)
. . .

eJl (t, s)

⎞⎟⎠Q−1, t, s ∈ Tκ ,

uch that, for k = 1, 2, . . . , l ≤ n,

Jk (t, s) = eλk (t, s)

⎛⎜⎜⎜⎝
1 m1

λk
(t, s) . . . mnk−1

λk
(t, s)

1 . . . mnk−2
λk

(t, s)
. . .

...

⎞⎟⎟⎟⎠ ,
1
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Fig. 1. T = P{σ (tk),tk+1} = ∪
∞

k=0[σ (tk), tk+1].

where n1 + · · · + nl = n. The mappings mn
λk

: T × Tκ
→ C, called

monomials of degree n, are recursively defined by

m0
λk
(t, s) = 1 ; mn+1

λk
(t, s) =

∫ t

s

mn
λk
(τ , s)

1 + µ(τ )λk(τ )
∆τ .

For T = R, one gets mn
λk
(t, s) =

(t−s)n
n! , t, s ∈ R.

For T = hZ, we have mn
λk
(t, s) =

(t−s)n
n!(1+hλk)n

, t, s ∈ T. If
λ is uniformly regressive, (i.e. there exists a γ > 0 such that
γ −1

≤ |1 + µ(t)λ|, ∀t ∈ Tκ ), then the estimate
|mn

λ(t, s)| ≤ γ n(t − s)n holds for t ≥ s, n ∈ N (see Potzsche
et al. (2003) for more details).

2.2. Problem statement

This paper is devoted to the study of switched system x∆(t) =

Aix(t), where Ai ∈ Rn×n and x(t) ∈ Rn is the state vector. The
switching instants are expressed by the sequence {t0, t1, σ (t1),
2, σ (t2), t3, . . . , σ (tk), tk, . . .}, without finite accumulation points,
here σ (.) is the forward jump operator, with σ (t0) = t0, σ (tk) >

k, ∀k ∈ N∗ (see Fig. 1). The considered system switches between
two modes such that, i ∈ {c, d} ={continuous, discrete}, where Ac
s activated at instants σ (tk) and Ad is activated at tk. Time scales
heory is introduced to study the stability of this special class of
witched systems on T = P{σ (tk),tk+1} = ∪

∞

k=0[σ (tk), tk+1], such
hat

∆(t) =

{
Acx(t), for t ∈ ∪

∞

k=0[σ (tk), tk+1[

Adx(t), for t ∈ ∪
∞

k=0{tk+1}
(2)

ote that, the second equation is the discrete-time linear dynamic
hich corresponds to state jumps for instance, during a variable
eriod of time µ(tk) = σ (tk) − tk, k ∈ N∗. The objective is to
esign T = ∪

∞

k=0[σ (tk), tk+1] as a control parameter stabilizing
the switched system (2), in the presence of unstable modes,
according to conditions that will be derived in the next Section.

The eigenvalues of Ac (resp. Ad) are denoted by λ
j
c (resp. λ

j
d). It

s known that, if all eigenvalues of Ac have a negative real part, so
he continuous-time subsystem is stable. However, the stability
f the discrete-time subsystem with variable discrete step sizes,
epends on the eigenvalues of Ad and also on µ(t) at each instant
∈ ∪

∞

k=0{tk+1}. Note that Ad is Hilger stable, if all eigenvalues λ
j
d

of Ad lie strictly within the Hilger circle Hmin. This means that

|1 + µ(tk)λ
j
d| < 1, ∀1 ≤ j ≤ n, ∀k ∈ N∗. (3)

Condition (3) implies that the values µ(tk) have to satisfy 0 <

(tk) < γd, ∀k ∈ N∗, where γd = min1≤j≤n

{
−2ℜ(λj

d)

|λ
j
d|

2

}
, with

(.) denote the real part and |.| is the modulus.
On the other hand, Ad is unstable if it has at least one eigen-

alue λ
j
d such that ℜ(λj

d) > 0 or if all the eigenvalues of Ad have
a negative real part, but there exists at least one eigenvalue λ

j
d

such that |1 + µminλ
j
d| > 1.

3. Main results

We shall study the stabilization problem of switched system
(2), via dwell time switching. The cases where unstable modes
exist will be considered. First, we need the following proposition:
3

Proposition 1. Let T be an arbitrary time scale with graininess
function µ(.), and let a regressive matrix A ∈ Rn×n with eigenvalues
λk, for k = 1, . . . , l ≤ n be given. Let λ be an eigenvalue of A such
that |eλ(t, s)| = max1≤k≤l |eλk (t, s)|, ∀t, s ∈ Tκ . For every α ∈ R+,
which satisfies eα(t, s) ≥ |eλ(t, s)|, ∀t, s ∈ Tκ , t ≥ s, there exists
β ≥ 1, such that

∥eA(t, s)∥ ≤ β eα(t, s), ∀t ≥ s.

roof. From Theorem 1, the upper bound of the generalized
xponential matrix eA(t, s) is given by

∥eA(t, s)∥ ≤ ∥Q∥∥Q−1
∥ |eλ(t, s)| ×(

1 + max1≤k≤l

(
max1≤n≤nk−1 |mn

λk
(t, s)|

))
,

or t, s ∈ Tκ , t ≥ s. For a small ε ≥ 0, with ε ⊕ λ ̸= 0, let us
efine the constant α, satisfying eα(t, s) = |eλ⊕ε(t, s)|, such that

Q∥∥Q−1
∥ |eλ(t, s)|(1 + max

1≤k≤l
( max
1≤n≤nk−1

|mn
λk
(t, s)|))

β |eλ⊕ε(t, s)| = β eα(t, s),

or some positive constant β . Hence

≥ ∥Q∥∥Q−1
∥(1 + max

1≤k≤l
( max
1≤n≤nk−1

|mn
λk
(t, s)|))

|eλ⊖(λ⊕ε)(t, s)|

∥Q∥∥Q−1
∥ (1 + max

1≤k≤l
( max
1≤n≤nk−1

|mn
λk
(t, s)|))

× e⊖ε(t, s). (4)

ote that e⊖ε(t, s) = e−
∫ t
s

log(1+µ(τ )ε)
µ(τ ) ∆τ is always decreasing in

time, since ε > 0, and the above term is always bounded. Since
(4) holds, ∀t ≥ s, ∃ β ≥ 1 with

β = maxt (∥Q∥.∥Q−1
∥

×(1 + max1≤k≤l(max1≤n≤nk−1 |mn
λk
(t, s)|)) e⊖ε(t, s)),

such that ∥eA(t, s)∥ ≤ β eα(t, s). ■

Remark 1. If A is diagonalizable, then ∥eA(t, s)∥ ≤ β eα(t, s) with
eα(t, s) = |eλ(t, s)| and β = ∥Q∥∥Q−1

∥.

3.1. Stabilization via dwell time

Consider the switched system (2) evolving on T = ∪
∞

k=0[σ (tk),
tk+1], such that there always exist the constants αc, αd ∈ R+, βc
≥ 1 and βd ≥ 1, satisfying, from Proposition 1, the following
inequalities:

- For all t, s ∈ ∪
∞

k=0[σ (tk), tk+1[, s ≤ t ,

∥eAc (t, s)∥ = ∥eAc (t−s)
∥ ≤ βc eαc (t, s) = βceαc (t−s) (5)

- For all k ∈ N∗,

∥eAd (σ (tk), tk)∥ = ∥I + µ(tk)Ad∥ ≤ βd eαd (σ (tk), tk)
= βd(1 + µ(tk)αd).

(6)

Remark 2. If Ac and Ad are diagonalizable, so αc = max1≤j≤n ℜ(λj
c)

and αd can be computed such that, max1≤j≤n |1 + µ(t)λj
d| =

(1 + µ(t)αd), ∀t ∈ ∪
∞

k=0{tk+1}. The constants βc = ∥Qc∥.∥Q−1
c ∥

and βd = ∥Qd∥.∥Q−1
d ∥. If Ac and Ad are not diagonalizable,

so αc = max1≤j≤n(ℜ(λj
c)) + ε and αd can be computed as

max |1 + µ(t)(λj
⊕ ε)| = (1 + µ(t)α ), ∀t ∈ ∪

∞
{t },
1≤j≤n d d k=0 k+1
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or some small ε > 0. From Proposition 1, and definition of
onomials of the Jordan matrix, βc and βd can be computed as

βc = max
t

(∥Qc∥.∥Q−1
c ∥(1 + t (n−1)) e−ε(t−s)),

βd = max
t

(∥Qd∥.∥Q−1
d ∥

(
1 +

⏐⏐⏐⏐ µ(t)
1 + µ(t)λk

⏐⏐⏐⏐(m−1)
)

1
(1 + µ(t)ε)

),

where n andm are the highest geometric multiplicity correspond-
ing to the eigenvalue λk of Ac and Ad respectively. Note that, if
αc < 0, then Ac is Hilger stable and if 0 > αd ∈ R+ (i.e.;
0 < 1 + µ(tk)αd < 1, ∀k ∈ N∗), then Ad is Hilger stable.

To determine the dwell time conditions for stability of
witched system (2), we compute its general solution.
For σ (tk) ≤ t < tk+1 and σ (t0) = t0 = 0, the solution of system

(2) is given by (see Taousser et al. (2014)),

x(t) = eAc (t, σ (tk)) eAd (σ (tk), tk) eAc (tk, σ (tk−1))
× · · · eAd (σ (t1), t1) eAc (t1, t0) x0.

= eAc (t−σ (tk)) (I + µ(tk)Ad) eAc (tk−σ (tk−1))

× · · · (I + µ(t1)Ad) eAc t1 x0.

(7)

According to (5), (6), an upper bound of (7) is given by

∥x(t)∥ ≤ ∥eAc (t−σ (tk))∥∥(I + µ(tk)Ad)∥∥eAc (tk−σ (tk−1))∥

× · · · ∥(I + µ(t1)Ad)∥∥eAc t1∥ ∥x0∥
≤ βceαc (t−σ (tk)) βd(1 + µ(tk)αd) βceαc (tk−σ (tk−1))

× · · · βd(1 + µ(t1)αd) βceαc t1 ∥x0∥
≤ e

∑k
i=0[log(βc )+αc (ti+1−σ (ti))+log(βd(1+µ(ti)αd))]

×∥x0∥.

(8)

It is assumed throughout the paper that T is unbounded above
and the graininess function is bounded (i.e.; µmin ≤ µ(tk) ≤

µmax, ∀k ∈ N∗). Denote by τk := tk+1 − σ (tk), ∀k ∈ N, the
duration of each continuous-time subsystem which is assumed
to be bounded (i.e.; τmin ≤ τk ≤ τmax, ∀k ∈ N). The aim
of the paper is to design a time scale T = ∪

∞

k=0[σ (tk), tk+1]

which stabilizes the switched system (2). Note that, in order for
the solution of the switched system to be well defined, we have
to choose a time scale T which ensures the regressivity of the
matrices Ac and Ad. This means that we have to design T with
µ(tk) satisfying |1 + µ(tk)λ

j
d| ̸= 0, ∀k ∈ N∗, ∀1 ≤ j ≤ n. Note

that Ac is always regressive on the intervales [σ (tk), tk+1]. In what
follows, Ad is Hilger stable means that µ(tk), ∀k ∈ N∗ of the time
scale T will be designed to satisfy condition (3). Note that, even if
the two subsystems are Hilger stable the switched system (2) may
be unstable. For that, we will derive dwell time conditions which
stabilize the switched system (2) in the following Theorems.

Theorem 2. Let αc , αd, βc and βd be defined as in (5), (6). If one
of the following conditions is satisfied:

(i) Ac and Ad are Hilger stable and T is designed such that,

τk >
− log(βc)

αc
,

1 − βd

αd βd
< µ(tk) <

−1
αd

, ∀k ∈ N. (9)

or

τk >
− log(βcβd)

αc
, 0 < µ(tk) <

−1
αd

, ∀k ∈ N, (10)

with αc < 0 and 0 > αd ∈ R+.
(ii) Ac is Hilger stable, Ad is unstable, and T is designed such that,

τk >
− log(βdβc)

αc
, 0 < µ(tk) <

e−αcτmin

αdβdβc
−

1
αd

, ∀k ∈ N,

(11)

with α < 0 and α > 0.
c d

4

(iii) Ac is unstable, Ad is Hilger stable, and T is designed such that,

1 − βcβd

αdβcβd
< µ(tk) <

−1
αd

, ∀k ∈ N∗. (12)

0 < τk <
− log(βcβd(1 + µminαd))

αc
, ∀k ∈ N, (13)

with αc > 0 and 0 > αd ∈ R+.

Then the switched system (2) is exponentially stable.

Proof. Let µ(tk), ∀k ∈ N∗ satisfy (3) and the regressivity of Ad.
The upper bound of the solution of (2) is given by

∥x(t)∥ ≤ e
∑k

i=0[log(βc )+αcτi+log(βd(1+µ(ti)αd))]∥x0∥. (14)

(i) Since Ac is stable, so αc < 0, and from (9), we get
k∑

i=0

[log(βc) + αcτi] ≤ k[log(βc) + αcτmin] < 0.

Also, Ad is Hilger stable, so 0 > αd ∈ R+, which means that
0 < (1 + µ(tk)αd) < 1, ∀k ∈ N∗, and from (9), we get
k∑
i=i

log[βd(1 + µ(ti)αd)] ≤ k log[βd(1 + µminαd)] < 0.

From (14), and the above inequalities, an upper bound for
x(t) is given by

∥x(t)∥ ≤ ek[(log(βc )+αcτmin)+log(βd(1+µminαd))] ∥x0∥. (15)

The terms at the exponential function are negative, which
implies that the solution converges exponentially to zero
when k → ∞ (t → ∞).
We can derive another dwell time conditions which are
more restrictive for the continuous-time subsystem and less
restrictive for the discrete-time subsystem. From (14), the
upper bound of the solution can be written as

∥x(t)∥ ≤ e
∑k

i=0[(log(βcβd)+αcτi)+log(1+µ(ti)αd)]∥x0∥. (16)

From (10), all the terms of the exponential in (16) are
negative, and the solution is exponentially stable.

(ii) Suppose that Ac is stable and Ad is unstable (i.e.; µ(tk), ∀k ∈

N∗ does not satisfy condition (3)). From (16), we have

∥x(t)∥ ≤ e
∑k

i=0[αcτi+log(βcβd(1+µ(ti)αd))]∥x0∥,

such that, αc < 0 and αd > 0. So we get

∥x(t)∥ ≤ ek[(αcτmin)+log(βcβd(1+µmaxαd))]∥x0∥. (17)

From condition (11), we get

1 < (1 + µ(ti)αd) <
e−αcτmin

βcβd
, ∀1 ≤ i ≤ k.

which implies that all the terms at the exponential in (17)
are negative and the solution converges exponentially to
zero. Note that, in order for the above inequality to be
satisfied, τmin must satisfy the condition τmin >

− log(βdβc )
αc

,
which conclude the proof.

(iii) From (12) we get, 0 < βcβd(1+µ(tk)αd) < 1, and from (13),
we have αcτk + log(βcβd(1 + µminαd)] < 0, ∀k ∈ N, such
that, αc > 0. From (16), the upper bound of x(t) is given by

∥x(t)∥ ≤ e
∑k

i=0[αcτi+log(βcβd(1+µ(ti)αd))] ∥x0∥
= ek[αcτmax+log(βcβd(1+µminαd))] ∥x0∥.

The terms of the exponential are negative, which implies that the
solution of the switched system (2) converges exponentially to
zero when k → ∞ (t → ∞). ■
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emark 3. Note that, conditions (11) and (12) in assumptions
(ii) and (iii) can be relaxed as follows:

(ii) For αc < 0 and αd > 0, and for each τk >
− log(βdβc )

αc
, we have

0 < µ(tk) < e−αc τk
αdβdβc

−
1
αd

, ∀k ∈ N,
(iii) For αc > 0 and αd < 0, and for each µ(t) satisfying 1−βcβd

αdβcβd
<

µ(tk) < −1
αd

, ∀k ∈ N∗, we have
0 < τk <

− log(βcβd(1+µkαd))
αc

, ∀k ∈ N∗.

his conditions are less restrictive but require more computa-
ions.

.2. Stabilization via average dwell time

In this section we will show that there may exist some con-
ecutive switching subsystems in (2) which not satisfy the dwell
ime conditions determined in Section 3.1, but the switched sys-
em (2) can be stabilized if certain dwell time conditions are
atisfied in average for each consecutive switched subsystem.
et us define the stabilizing average dwell time conditions for
ontinuous and discrete switched systems respectively.

efinition 1 (Hespanha & Morse, 1999; Zhai et al., 2002). We say
hat τa is an average dwell time for the continuous switched
ystem ẋ(t) = Aix(t) (resp. the discrete switched system x(k +

) = Aix(k)), if for some positive number N0 (called the chatter
ound) and for all t ≥ τ ≥ 0, the number of switching signals
ver the time interval [τ , t) (resp. on the interval [k′, k)), denoted
y Nσ (τ , t) (resp. Nσ (k′, k)), satisfies

Nσ (τ , t) ≤ N0 +
t−τ
τa

.

(resp. Nσ (k′, k) ≤ N0 +
k−k′
τa

, k′
∈ N, k′

≤ k).

hich means that in average, the dwell time between any two
onsecutive switching is no smaller than τa.

Note that, the above average dwell time conditions cannot be
sed for stability of the class of switched systems (2). Next, we
ill derive a new average dwell time conditions for the switched
ystems (2), in the presence of unstable modes. In the following,
e consider αc , αd, βc and βd defined as in (5) and (6), and let β =

ax{βc, βd} ≥ 1. Let N(0, t) be the number of switching over the
interval [0, t], ∀ t ∈ ∪

∞

k=0[σ (tk), tk+1]. Denote the total duration
time of the continuous-time subsystem (resp. the discrete-time
subsystem) from t0 = 0 to t , ∀t ∈ ∪

∞

k=0[σ (tk), tk+1], by Tc(0, t)
(resp. Td(0, t)).

Theorem 3. If the following assumptions are fulfilled:

(i) Ac and Ad are Hilger stable such that

0 < µ(tk) <
−1
αd

with αd < 0, ∀k ∈ N∗. (18)

(ii) For a given λ > 0, an arbitrary N0 > 0 and ∀t ∈ ∪
∞

k=0[σ (tk),
tk+1],

N(0, t) ≤ N0 +
t
τ ∗
a
, with τ ∗

a =
log(β)

λ
. (19)

hen, the switched system (2) is exponentially stable if the average
well time between any two consecutive switching is greater than
∗
a , such that (18) is satisfied.

roof. Let µ(tk), ∀k ∈ N∗ satisfy (3) and the regressivity of Ad.
rom the upper bound of the solution of system (2), for σ (t ) ≤
k

5

≤ tk+1, ∀k ∈ N, expressed in (8), we get

∥x(t)∥ ≤ β2k+1eαc (t−
∑k

i=0 µ(ti))
∏k

i=1(1 + µ(ti)αd) ∥x0∥
≤ β2k+1eαc (t−

∑k
i=0 µ(ti)) (1 + µminαd)k ∥x0∥

= β eN(0,t) log(β)+αc (t−
∑k

i=0 µ(ti))+k log(1+µminαd)

× ∥x0∥.

(20)

e have k ≥

∑k
i=0 µ(ti)
µmax

. Hence, one gets

∥x(t)∥ ≤ β ∥x0∥

× eN(0,t) log(β)+αc (t−
∑k

i=0 µ(ti))+
∑k

i=0 µ(ti)
(
log(1+µminαd)

µmax

) (21)

ixing µmin and µmax satisfying (18). Let λ′
= max{αc,

log(1+µminαd)
µmax

} < 0, so we get

∥x(t)∥ ≤ β eN(0,t) log(β)+λ′t
∥x0∥. (22)

System (2) is exponentially stable with a desired rate of decrease
λ∗, such that λ′ < λ∗ < 0, if

eN(0,t) log(β)+λ′t
≤ eγ+λ∗t , for an arbitrary constant γ > 0,

which implies that N(0, t) log(β) ≤ γ + (−λ′
+ λ∗)t . So we get,

N(0, t) ≤ N0(t, 0) +
t
τ ∗
a
, with

N0(t, 0) = [
γ

log(β)
] > 0 and τ ∗

a =
log(β)

−λ′ + λ∗
, where [.]

enotes the integer part. Which concludes the proof for λ =

−λ′
+ λ∗). ■

emark 4. If β = 1, the term in the exponential in (22) is
lways negative, and system (2) is exponentially stable under an
rbitrary switching such that (18) is satisfied.

heorem 4. If the following assumptions are fulfilled:

(i) Ac is stable and Ad is unstable.
(ii) Let the switching law stability

Tc(0, t)
Td(0, t)

≥

−
log(1+µmaxαd)

µmin
+ λ∗

αc − λ∗
, (23)

for given constants λ, λ∗ such that αc < λ∗ < λ < 0.
(iii) For an arbitrarily N0 > 0 and ∀t ∈ ∪

∞

k=0[σ (tk), tk+1],

N(0, t) ≤ N0 +
t
τ ∗
a
, with τ ∗

a =
log(β)
λ − λ∗

, (24)

Then, the switched system (2) is exponentially stable with rate of
decrease λ for any average dwell time, between two consecutive
switching greater than τ ∗

a .

Proof. Since Ad is supposed to be unstable, so αd > 0. From
(20), and according to (i), we have for a fixed µmax and µmin, the
following upper bound for the solution

∥x(t)∥ ≤ βeN(t,0) log(β)+αc (t−
∑k

i=0 µ(ti))+k log(1+µmaxαd)

× ∥x0∥,
(25)

with αc < 0. We have k ≤

∑k
i=1 µ(ti)
µmin

, so

∥x(t)∥ ≤ β ∥x0∥

× eN(t,0) log(β)+αc (t−
∑k

i=0 µ(ti))+
∑k

i=0 µ(ti)
log(1+µmaxαd)

µmin

= β eN(t,0) log(β)+αcTc (0,t)+Td(0,t)
log(1+µmaxαd)

µmin ∥x0∥.

Let λ∗ with αc < λ∗ < 0, such that condition (23) is satisfied,
hich is equivalent to

cTc(0, t) + Td(0, t)
log(1 + µmaxαd)

< λ∗t.

µmin
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o an upper bound of x(t) is given by

x(t)∥ ≤ β eN(0,t) log(β)+λ∗t
∥x0∥ (26)

et λ be the desired rate of decay of the switched system (2)
uch that λ∗

≤ λ < 0, so eN(0,t) log(β)+λ∗t
≤ eγ+λt , for an arbitrary

constant γ > 0, which is equivalent to N(0, t) ≤ N0 +
t

τ∗
a
, with

0 = [
γ

log(β) ] and τ ∗
a =

log(β)
λ−λ∗ . ■

Remark 5. If β = 1 and condition (23) is satisfied, so the
witched system (2) is exponentially stable.

heorem 5. If the following assumptions are fulfilled:

(i) Ac is unstable and Ad is Hilger stable, such that

0 < µ(tk) <
−1
αd

, with αd < 0, ∀k ∈ N∗, αc > 0. (27)

(ii) Suppose that for a fixed µmin and µmax satisfying (27), and for
a given negative constants λ, λ∗, such that
log(1 + µminαd)

µmax
< λ∗ < λ < 0, (28)

the switching law is determined as

Td(0, t)
Tc(0, t)

≥
αc − λ∗

−
log(1+µminαd)

µmax
+ λ∗

, (29)

(iii) For an arbitrary N0 > 0, and ∀t ∈ ∪
∞

k=0[σ (tk), tk+1[,

N(0, t) ≤ N0 +
t
τ ∗
a
, with τ ∗

a =
log(β)
λ − λ∗

, (30)

hen the switched system (2) is exponentially stable with rate of de-
crease λ and for an average dwell time between any two consecutive
switching greater than τ ∗

a .

Proof. Similarly to the above analysis, and according to (i) we
have, for σ (tk) ≤ t ≤ tk+1, k ∈ N

∥x(t)∥ ≤ β eN(0,t) log(β)+αcTc (0,t)+Td(0,t)
log(1+µminαd)

µmax ∥x0∥, (31)

or a fixed µmin and µmax satisfying (27) and αc > 0. Let
log(1+µminαd)

µmax
< λ∗ < 0. Condition (29) is equivalent to

cTc(0, t) + Td(0, t)
log(1 + µminαd)

µmax
< λ∗t, so

x(t)∥ ≤ β eN(0,t) log(β)+λ∗t
∥x0∥

Let λ be the rate of decrease of the trajectories of system (2), such
that, λ∗

≤ λ < 0, so N(0, t) log(β) + λ∗t ≤ γ + λt , for an
rbitrary constant γ > 0. Which implies that N(0, t) ≤ N0 +

t
τ ∗
a
,

or N0 = [
γ

log(β) ] and τ ∗
a =

log(β)
λ−λ∗ , and conclude the proof. ■

emark 6. If β = 1 and conditions (27), (29) are satisfied, so the
witched system (2) is exponentially stable.

. Numerical results

Consider the switched system (2) with Ac =

(
2 1
−1 −0.5

)
hich is unstable, such that λ1

c = 0, λ2
c = 1.5 = αc , with

βc = 3. Let Ad =

(
−13
4

−1
2

1
2

−1
2

)
, such that λ1

d = −3.1559 = αd,
2
d = −0.5941 and βd = 1.4639. The matrix Ad is regressive
nd stable if 0 < µ(t) < 0.6337 and µ ̸= 0.3169. From
6

ssumption (iii) of Theorem 2, the dwell time of the discrete-
ime subsystem is 0.2447 < µ < 0.3169. Take for example,
(t) = 0.3, the switched system is stable if the dwell time of each
ontinuous-time subsystem τk < 0.9689, ∀k ∈ N. For τk = 0.9,
the switched system is stable as shown in Fig. 2. For τk = 2,
the continuous-time condition of stability is not satisfied and the
switched system diverges Fig. 3. For µ(t) = 0.1, µ(t) = 0.5 and
k = 0.9, Ad is still stable, but the corresponding dwell time
ondition of stability is not satisfied and the switched system
iverges Figs. 4, 5. For the average dwell time, let µmin = 0.2,
max = 0.5, λ∗

= −0.9 and λ = −0.3046, so τ ∗
a = 1.8452

nd Tc
Td

≥ 2.1920. If we activate the switched system on T =

∞

k=0[0.9k +
5k

10k + 15
, 0.9(k + 1)], the average dwell time

onditions are satisfied and the system is stable Fig. 6.

. Application to consensus problem under intermittent infor-
ation transmission

To illustrate the viability of the proposed scheme, we in-
estigate the consensus problem for linear multi-agent systems
MASs) with intermittent information transmissions. We will
how that this problem can be converted to a switched system
etween a continuous-time subsystem (when the communication
ccur) and a discrete-time subsystem (when the communication
ails). Consider MAS consisting of N agents whose model is
escribed by the following linear dynamics,

˙i = Axi + Bui, ẋ0 = Ax0 i ∈ {1, . . . ,N} (32)

where x0 ∈ Rn is the state of the leader, xi ∈ Rn is the state of
agent i and ui ∈ Rm is the control input of agent i. A ∈ Rn×n and
B ∈ Rn×m are constant real matrices. The communication network
among the N agents is described by a graph G which consists of a
node set V = {1, 2, . . . ,N} and an edge set E ⊆ V ×V . Each edge
(i, j) ∈ E in the directed graph (Ren & Beard, 2005), corresponds
to the information link between agent i and agent j. The graph G
is represented by the adjacency matrix G = (aij) ∈ RN×N defined
by aij = 1 if (j, i) ∈ E and aij = 0, otherwise. The Laplacian matrix
of G is defined as H = (mij) ∈ RN×N with mii =

∑N
j=1 aij and

mij = −aij for i ̸= j. Hereafter, suppose that each communication
failure has a bounded duration (denoted by µmax ∈ R+), the pair
(A, B) is stabilizable, and the graph G is fixed and directed. Let zi
be the local information available for agent i, such that

zi =

∑
j∈Ni

(xj − xi) + di(x0 − xi), (33)

where Ni is the set of neighbors of agent i such that aij = 1 with
di = 1, if the leader state is available to follower i and with di = 0
otherwise.

It is assumed that local information is exchanged between
neighboring agents through a communication channel over some
disconnected time intervals because of possible sensor failures or
communication obstacles, such that the agents can communicate
with their neighbors over the time intervals ∪

∞

k=0[σ (tk), tk+1[. At
tk+1, the communication fails during a period µ(tk+1) = σ (tk+1)−
tk+1. Based on the available local information, the following dis-
tributed intermittent controller is proposed, ∀i ∈ {1, . . . ,N},

ui(t) =

{
Kzi(t), if t ∈ ∪

∞

k=0[σ (tk), tk+1[

Kzi(tk+1), if t ∈ ∪
∞

k=0[tk+1, σ (tk+1)[,
(34)

such that, over the time intervals [tk+1, σ (tk+1)[ the feedback
control does not evolve due to the absence of local information.
The state error between the leader and the agent i is determined
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Fig. 2. Stable trajectories for µ = 0.3, τk = 0.9.

Fig. 3. Unstable trajectories for µ = 0.3, τk = 2.

Fig. 4. Unstable trajectories for µ = 0.1, τc = 0.9.

7
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Fig. 5. Unstable trajectories for µ = 0.5, τc = 0.9.
Fig. 6. Unstable trajectories for µ = 0.5, τc = 0.9.
t
u
m
L

R

y ei = xi−x0. Let u = (uT
1, . . . , u

T
N )

T . The dynamic of the tracking
rror e = (eT1, . . . , e

T
N )

T can be written in the compact form as

˙(t) = (IN ⊗ A)e(t) + (IN ⊗ B)u(t),

(t) =

{
−(H ⊗ K )e(t), if t ∈ ∪

∞

k=0[σ (tk), tk+1[

−(H ⊗ K )e(tk+1), if t ∈ ∪
∞

k=0[tk+1, σ (tk+1)[
(35)

he closed-loop system (35) becomes

˙ =

⎧⎪⎨⎪⎩
[(IN ⊗ A) − (H ⊗ BK )]e(t),

t ∈ ∪
∞

k=0[σ (tk), tk+1[,

(IN ⊗ A)e(t) − (H ⊗ BK )e(tk+1),
t ∈ ∪

∞

k=0[tk+1, σ (tk+1)[.

(36)

Using the definition of the ∆-derivative and considering the spe-
cific time scale T = ∪

∞

k=0[σ (tk), tk+1], the closed-loop system (36)
can be converted to the switched system, as in (2) (see Taousser
et al. (2015b, 2016) for more details):

e∆(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[(IN ⊗ A) − (H ⊗ BK )]e(t),

t ∈ ∪
∞

k=0[σ (tk), tk+1[(
e(IN⊗A)µ(t)

− I
µ(t)

)
[InN − (H ⊗ A−1BK )]e(t),

t ∈ ∪
∞

k=0{tk+1}

(37)

The objective is to design the time scale T, such that the state
error ei between the leader and agent i satisfy limt→∞ ∥ei(t)∥ = 0,
∀i ∈ {1, . . . ,N} (i.e., the system (32) still stable, even when we
lose the communication between agents for some period of time).
That the leader–follower consensus problem is equivalent to the
8

Fig. 7. Communication topology.

stabilization problem of the switched system (37) by designing
the time scale T = ∪

∞

k=0[σ (tk), tk+1], according to the dwell
ime conditions derived in Sections 3.1 and 3.2. This, will enable
s to achieve exponential consensus under intermittent infor-
ation transmissions while avoiding the derivation of complex
yapunov–Krasovskii and Razumikhin functions.

emark 7. Notice that, if A is not invertible, we can always
determine the discrete matrix via the convergence power series

E(Aµ(t)) =
∑

∞

n=1
(Aµ(t))n−1

n! , and Ad =

(
e(IN⊗A)µ(t)

− I
µ(t)

)
[E(Aµ(t))

(H ⊗ BK )].

To illustrate the procedure, let us consider the MAS which con-
sists of one leader and 2 followers satisfying the communication

topology shown in Fig. 7. Let A =

(
0 1

)
, B =

(
0
)

0.1 0.05 1
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Fig. 8. Values of µ(t) for stability of Ad .

Fig. 9. Values of µ for stability of Ad .

Fig. 10. αd and βd for 1 ≤ µ ≤ 2.5.

9
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Fig. 11. Stable trajectories, with x0 = [−1, 0.5, −1, 1]T .
Fig. 12. Unstable trajectories, with x0 = [−1, 0.5, −1, 1]T .
nd the weighted matrix H =

(
1 0

−1 2

)
. The control gain

s set as K =
(

1 0.5
)
, with Ac = [(I2 ⊗ A) − (H ⊗ BK )],

hich is stable, such that λ1,2
c = −0.475 ± j1.294, λ3,4

c =

0.225± j0.9216 (we have αc = −0.225, βc = 3.4397), and Ad =

e(I2⊗A)µ(t)
− I

µ(t)

)
[I4−(H⊗A−1BK )]. The matrix Ad is Hilger stable,

if |1 + µ(t)λj
d| < 1, ∀1 ≤ j ≤ 4. As shown in Fig. 8 and its zoom

ig. 9, the discrete-time subsystem is stable if 0 < µ(t) < 0.92.
Let us choose 1 ≤ µ(t) ≤ 2.5, which leads to the instability of Ad.
As in Proposition 1, αd can be chosen such that, (1 + µ(t)αd) ≥

maxj |1 + µ(t)λj
d|, which is plotted in Fig. 10. Let αd = 2.044, so

βd can be chosen, such that βd ≥
∥eAd (σ (tk),tk)∥
eαd (σ (tk),tk)

=
∥I4−µ(t)Ad∥
(1+µ(t)αd)

. From
ig. 10, let βd = 1.161. The dwell time conditions for stability
re

k >
− log(βcβd)

αc
= 6.1541, 1 ≤ µ(t) ≤

e−αcτmin

αdβdβc
−

1
αd

= 2.5.

Consider the time scale T =
⋃

∞

k=0[12.64+
5k

2k+1.33 , 12.64(k+ 1)],
hich satisfies the stability conditions, as shown in Fig. 11, the
witched system is stable. If we change the time scale T =

∞

k=0[5.5 +
10k

2k+1.33 , 5.5(k + 1)] by decreasing τk, such that the
condition of dwell time is not satisfied, the system becomes
unstable (see Fig. 12).
10
6. Conclusion

A special class of switched systems between a continuous-
time and a discrete-time subsystems with variable discrete steps
has been considered. By introducing time scales theory, dwell
time conditions are derived to stabilize the switched system in
the presence of unstable modes. The conditions provide a new
method to exploit the stabilization of this particular class of
switched systems. The traditional dwell time conditions for sta-
bility of switched systems do not apply for the considered class,
so that, time scales theory provides to be the right mathematical
tool to solve such problem.
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