IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 15 May 2023, accepted 23 June 2023, date of publication 5 July 2023, date of current version 17 July 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3292793

== survey

Review of Emerging Concepts in Distribution
System State Estimation: Opportunities
and Challenges

AJAY PRATAP YADAV 1, (Member, IEEE), JAMES NUTARO 2, (Senior Member, IEEE),
BYUNGKWON PARK "2, (Member, IEEE), JIN DONG ", (Member, IEEE),

BOMING LIU“?, (Member, IEEE), SRIKANTH B. YOGINATH'!, (Member, IEEE),

HE YIN“3, (Senior Member, IEEE), JIAOJIAO DONG 3, (Senior Member, IEEE),

YUQING DONG 3, (Member, IEEE), YILU LIU"?, (Fellow, IEEE),

TEJA KURUGANTI', (Senior Member, IEEE), AND YAOSUO XUE !, (Senior Member, IEEE)

10ak Ridge National Lab, Oak Ridge, TN 37830, USA
2Department of Electrical Engineering, Soongsil University, Seoul 06978, South Korea
3Department of Electrical Engineering and Computer Science, The University of Tennessee at Knoxville, Knoxville, TN 37996, USA

Corresponding author: Ajay Pratap Yadav (yadavap @ornl.gov)

This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-000R22725 with the US Department of Energy (DOE).
The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a
nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do

so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the
DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

ABSTRACT Distribution System State Estimation (DSSE) infers the states (e.g., voltage phasors) using
measurements from the electric distribution grid. As the distribution network becomes more active due to
the increasing penetration of Distributed Energy Resources (DER), a deeper investigation into conventional
DSSE approaches is needed. This review paper focuses on state-of-the-art techniques and challenges for
DSSE in the context of emerging concepts, such as new sensor technologies, data-driven approaches, and
high DER penetration.

INDEX TERMS Distribution system state estimation, data-driven approach, high renewable penetration,
new sensor technology, pseudo measurements, sensor placement.
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Real component of voltage.

Imaginary component of voltage.

Real component of admittance matrix.

Lagrangian.

Active power injection for node i and phase d (a, b,
or c).

Ql’?l Reactive power injection for node i and phase d (a,
b, orc).
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I. INTRODUCTION

Distribution system state estimation (DSSE) infers state
information about an electric distribution network from
measurement data. In other words, distribution state esti-
mation maps measurements, from e.g., phasor measurement
units (PMUs) or supervisory control and data acquisition
(SCADA), to the system state (e.g., voltage phasors).

Seminal work on DSSE proposed in the early nineties was
mostly derived from transmission system state estimation [1],
[2]. Despite some similarities, the algorithms developed for
state estimation in the transmission system are not directly
applicable to DSSE. Compared to the transmission system,
the distribution system poses unique challenges such as
unobservability (i.e., the lack of sufficient measurements),
low x/r ratio (i.e., ignoring line resistance will make DSSE
inaccurate), and unbalanced operation (i.e., the requirement
of multiphase formulations) [3]. A detailed review of standard
techniques and relevant challenges associated with DSSE can
be found in [3] and [4].

The recent modernization of the electrical grid has
brought about significant changes in the distribution network,
evidenced by the integration of Distributed Energy Resources
(DERs), the incorporation of new sensor technologies,
enhanced communication systems, and advanced data ana-
lytics [5], [6]. These developments have transformed load
behavior from passive to active, enabling greater consumer
participation through initiatives such as demand response
programs. The growing adoption of electric vehicles further
empowers households to support the grid during peak demand
hours.

Integration of new technologies also increases the grid’s
vulnerability to cyber threats. As a result, it is crucial to
ensure that Distribution System State Estimation (DSSE)
remains resilient against various cyber attacks, such as false
data injection or denial of service. Developing robust and
secure DSSE frameworks will be essential for maintaining the
stability and reliability of the modernized grid, safeguarding
both critical infrastructure and consumer interests [7], [8].

In this paper, we provide a summary of the current
literature on DSSE, with a particular emphasis on research
from the last few years. We examine the challenges in
DSSE and review recent trends, specifically the integration
of renewable energy sources such as solar photovoltaic (PV)
systems. The paper is organized as follows: Section II offers a
brief overview of the DSSE problem formulation, algorithms,
and challenges. Section III discusses works related to sensors,
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FIGURE 1. Overview of the distribution system state estimation along
with different stages of the system.

followed by data-driven techniques developed for DSSE in
Section IV. Section V presents a discussion on challenges
and opportunities for future research. Finally, Section VI
concludes the paper.

Il. DSSE PROBLEM

This section reviews the standard DSSE formulation, fol-
lowed by a discussion of other DSSE formulations. Detailed
discussions on pseudo-measurement generation methods are
provided, along with a summary of some recent works on
DSSE in a tabulated list.

A. CONVENTIONAL FORMULATION

In a distribution network, current injection i and node voltages
v are mapped as i = Yv, where Y is the admittance matrix.
Active and reactive power injection can be formulated as
p = Re(vi*) and q = Imag(vi*), respectively. Vectors i
and v contain complex values, and the symbol * denotes the
complex conjugate operation.

DSSE is solved by minimizing

X = argmin(z — h(x))TW(z — h(x)), (1)

where x € R”" is the system states, z € R™ denotes
measurements and h(-) is the measurement function that maps
states to measurements. The choice of system state for a
distribution network is an important consideration as it affects
the analysis and control of the network. Node voltages are
a popular choice for system state as they provide a direct
measurement of the electrical properties of the network.
However, other quantities, such as line flows can also be
used as system state variables depending on the specific
application. Section II-B presents detailed formulations for x,

VOLUME 11, 2023



A. P. Yadav et al.: Review of Emerging Concepts in DSSE: Opportunities and Challenges

IEEE Access

TABLE 1. Recent works on DSSE.

Ref. | Methodology/Focus Contributions Research Gap
Uncertainty measurement the- | Simultaneous solution for DSSE and bad data detec- | Validation on more IEEE test systems is needed includ-
[91 | ory; Robustness against large | tion is performed. Maximum normal measurement rate- | ing a more realistic test case such as IEEE 123 instead
measurement error based bad data detection is utilized. of the modified 13-bus system. All testing scenarios
consider heavy noise at a specific node.
Gradient-based multi-area al- | Gradient-based WLS algorithm is designed for multi- | Linearization used during modeling is valid only for
[10] | gorithm; Parallel & distribution | area case with two objectives:1) robust against large | balanced and lossless systems—bad assumptions for a
computation of large DSSE | measurement errors 2) Tree/subtree topological struc- | distribution system.
problems ture of distribution system is used for computational
benefits 3) Real-time state estimation under changing
load conditions. Tested on IEEE 37-node system and
a 11000-node feeder (combined IEEE 8500 and EPRI
Ckt7)
WLS for low voltage distribu- | Given significant voltage drop in neutral conductor | Proposed approach needs to be validated on other test
[11] | tion grid (LVDG) in the LVDGs, the WLS algorithm is modified by | cases.
including neutral voltage as state variables. Measure-
ment functions and the Jacobian matrix are adjusted
accordingly.
WLS based on symmetrical | WLS problem is decomposed into three separate prob- | Mutual couplings between sequences is neglected.
[12] | components; Compensation | lems for each phases. Incorporates different types of
currents are utilized for | measurements and topologies. Computationally efficient
decoupling of the sequence | for large systems.
networks
DSSE formulation using virtual | DSSE problem is formulated assuming that the root | Proposed approach should be further validated using
[13] | reference bus. bus has unbalanced voltages and a balanced virtual | real measurements.
bus is used as reference bus. Standard assumptions of
balanced feeder head or using angle of only one phase
is challenged.
Focus is to avoid running mul- | Standard WLS is reformulated using Taylor series ex- | Small voltage drops and normal voltage limits are
[14] | tiple Monte Carlo simulations pansion. The resulting form offers computational bene- | assumed for distribution system.
fits.
DSSE with combined WLS | LM algorithm is incorporated within the WLS problem. | Slow sampling rate of smart meters.
[15] | and Levenberg—Marquardt al- | DSSE is formulated using power measurements.
gorithm
Semidefinite programming- | DSSE is reformulated as a rank-constraint SDP prob- | Accuracy of the solution suffers due to omission of the
[16] | based DSSE lem. Rank reduction and convex iteration approaches | rank one condition.
have been used to obtain low rank solution.
Constrained low-rank matrix | DSSE is formulated as matrix completion problem | AC power flow equations are linearized. Under exact
[17] | completion under low-observability conditions. formulations, the employed SDP may not give good
solutions.
DSSE considering multiple | Interval state estimation is solved, obtaining bounds on | Applications of the proposed work could be extended.
[18] | system uncertainties. states in the presence of uncertainties due to measure-
ment noise, imprecise line parameters, and uncertain
DG outputs.
DSSE for three-phase four- | Scalability of DSSE is addressed by considering state | The method is only evaluated on a modified IEEE 123-
[19] | conductor distribution network | variables as voltages of non-neutral and non-zero in- | bus distribution system and needs to be tested on other
with grounded wye-connected | jection phases. Smart meter measurements are used to | distribution systems. Real-time data from smart meters
loads estimate loads (pseudo measurement) are needed (usually not available)
Fault location algorithm, PMU- | In the SE algorithm is revised considering faulted sce- | Results for large test cases are needed.
[20] | based state estimation nario. Furthermore, to speed up the calculations, the
distribution system is partitioned into multiple zones —
SE is applied in each zone using PMU data.

measurement functions, and Jacobian when node voltages are
the state variables.

The matrix W is weight matrix whose values are chosen
depending upon the accuracy of measured data point.
Assuming the relation z = h(x) + e, where e is the
measurement error, a popular choice for W is W =
diag{o|” 2, oy 2, el (7,;2}, where oy, is the standard deviation
of the measurement error for the k™ element of z. Note that
this W assumes Gaussian noise with zero mean, and statistical
independence of individual elements in the measurements
vector z. Optimization tools such as iterative Gauss-Newton
approach can be used to solve the weighted least square
(WLS) problem in (1) [21], [22],

Ax; = G; '"H] W[z — h(xi)], )
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where k denotes iteration counts, Hy is the residual jacobian
(wrt. X), and Gy = H,;'—WHk. State update during
optimization can be obtained as Xy = Xx + AXy.

Note that the problem (1) suffers from non-convexity
due to nonlinear measurement functions. Hence, Newton-
based methods face issues such as convergence, finding
proper initialization, and matrix ill-conditioning. Other tools
such as convex optimization have been used to address
these limitations [23]. Quite often, the conditioning of
an optimization problem can be improved by providing
additional information to the optimizer. In the distribution
system, there are many nodes/buses that have zero power
injection. Providing this information as equality constraints
could be helpful and is known as virtual measurements. The
equality constraints can be incorporated into the objective
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function via Lagrange multipliers,

=z—-hx)"Wz-hx)+ATe®  3)

(% A} = argmin L 4)
X, A

where L is the Lagrangian, c¢(x) denotes the equality
constraints representing virtual measurements, and A is the
Lagrange multiplier. The Karush-Kuhn-Tucker conditions
can be then obtained by finding %+ iL — and 55 aL = 0. Herein,

the Gauss-Newton formulation becomes [24], [25]

Ax,]  [HTWH CT] ' [HTW(z — h(x)) s
S]] e
where C = g—;. For the standard WLS in (1), the objective
function can be sensitive to bad data. Therefore, other
formulations on residuals have also been employed such as
least median squared or normalized residuals functions [26].
Similarly, robust estimation techniques which reduce the
impact of bad data or outliers consider an objective function
of form F(z — h(x)), where F is a robust loss function, e.g.,
Huber’s functions [27].

Similar to (2) and (5) that use the Gauss-Newton approach,
other Newton-based techniques have also been extended
for distribution system state estimation (shown in (1)). For
example, the quasi-Newton BFGS method was used for state
estimation to simplify the Hessian matrix computation [28].
Similarly, optimization tools such as genetic algorithm [29]
and convex optimization [23] have also been extended to
DSSE. Table 1 lists some recent works on DSSE literature
along with plausible research gap for future works.

B. STRUCTURE AND ESTIMATION METHODS

Given the WLS formulation in (1), different formulations lead
to different measurement functions which map z to the system
states x. Consequently, the choice of states determines the
function h(-). For the distribution system, popular choices for
states include bus voltages and branch currents. Moreover,
these variables can be represented as phasors or in rectangular
forms, each leading to a distinct formulation [2], [30].

1) NODE VOLTAGES AS STATES
In the following, we show a sample formulation for this case.
The state variables can be defined as,

b rb b rb b b
ez’fna’ €1, ]7627f2""aenafna

et l- (6)

X = [elll,fla’ eg,fza, cees

5. fi. 5 s

The three-phase measurement equation and Jacobian matrix
of the power injection measurement is shown below. e/f are
the voltage phasor’s real/imaginary component; G/B are the
real/imaginary component of the admittance matrix; i/k are
the considered nodes; and ¢; is the set of nodes connected
to i. By is the set of phases connected to phase ¢. Superscript
d denote the phases a, b, c.
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Measurement equation for power:
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3
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)
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aQi _ keg; teB
362 = ifi=kandd =t
f;dGldkl _ e;'iB;'ik{, else
(10)
[ G Y S Gl - B
8Qi _ keg; teBy
—afkt = ifi=kandd =1t
_fidB;ikt le, else
(11)

2) BRANCH CURRENTS AS STATES

Herein, the branch currents are chosen as the state variables.
All the measurements are converted to the equivalent branch
current dependent functions. In this case, a major advantage
comes out that the Jacobian matrix is constant for all iteration
unlike the previous case where the Jacobian matrices need to
be calculated in each iteration [31].

C. PSEUDO-MEASUREMENT

Unlike transmission systems, distribution systems suffer from
poor observability due to lack of reliable measurements.
Usually, the measurement devices are only placed at impor-
tant nodes such as a substation and a large part of the
distribution network is not actively monitored. Note that
having an observable system is a prerequisite in estimation
theory. This problem is further exacerbated by the presence
of ‘bad’ data in measurements which can be caused by faults
or sensor malfunction. Traditionally, system observability can
be assessed by studying the rank of the Jacobian matrix. For
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FIGURE 2. Overview of a pseudo-measurement generation technique.
Here, the actual probability density function is modeled as a convex
combination of multiple normal Gaussian distributions.

example, in case of (4), the system is observable if the matrix

T T
|:H (‘:VH (i) i| is full rank (i.e. invertible) [32]. Another

approach to this observability issue would be using graph
theory (spanning tree) to represent this Jacobian invertibility
condition [33], [34]. It often becomes necessary to further
augment the available measurements with synthetic (but
realistic) data, called pseudo-measurement, obtained from
historical data records. Usually, pseudo-measurements are
forecasts of active and reactive power injection/consumption
at different buses. Pseudo-measurements are an economical
alternative to installing additional measurement devices.

Fig. 2 outlines a method to obtain pseudo-measurements
for different buses based on probability theory. By studying
the recorded load data from different consumers, load
probability density histograms can be obtained for each bus.
For example, consider the hourly load data (ERCOT year
2014 [35]) and its histogram for a bus shown in Fig. 2. This
can further be used to identify the distribution functions that
best represents system loads.

Traditionally, normal distributions are used to model load
profiles [25]. However, in most cases, system loads cannot
be described by a normal distribution function as evident
from Fig. 2. A popular approach to tackle this problem is by
using Gaussian mixture model (GMM) where the probability
distribution of loads (at each bus) is denoted by weighted sum
(convex combination) several Gaussian components [36],
[37]. Note that the load profiles and the GMM components
are calculated and stored prior to state estimation. Hereafter,
for a specific load bus at time ¢, the value of load z; can
be approximately guessed from the load profile while the
GMM components can be used to obtain a single equivalent
Gaussian distribution that can provide the variance value
for z;, needed for the WLS in (1).

The use of pseudo-measurement data can undermine DSSE
results due to low confidence in these pseudo-measurements
(can be 50% mean error). Pseudo-measurements can differ
significantly from actual values in the presence of DERs.
Considering these limitations, researchers have developed
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indices like the unobservability index based on probability
theory that quantifies the overall uncertainty in state estimate
results [38], [39]. Other indices such as normalized state
error squared, or the trace of error covariance matrix can
also be used to study estimation performances. Apart from
this, probabilistic-based data-driven approaches have also
been applied for pseudo-measurement generation. Section [V
provides a discussion on these methods.

Ill. SENSORS

A. SENSOR TECHNOLOGIES

Some of the important sensor technologies for a distribution
grid are listed below:

1) Phasor measurement units (PMU): PMUs are designed
to provide phasor estimates for currents and voltages
with a resolution of around 30-60 Hz. These measure-
ments are accompanied by GPS-enabled time stamps.
PMU comprises modules for data collection (CT/PT
for current & voltage sensing, filters, and analog-digital
converter), CPU block, GPS, and communication
interface blocks [S51]. This can further be augmented
with additional features depending upon requirements.
For example, a C37.118 compliant PMU for wide-area
monitoring applications will also contain a Feature
Extraction block [52].

2) Micro PMU: The traditional PMUs find most appli-
cation in transmission networks. Given their high
costs, they are rarely used in distribution networks.
Nonetheless, uPMUs have 100 times the resolution
of a conventional PMU and so are better suited for
distribution networks [53].

3) Smart power meters: Conventional power meter
comprises of current and voltage sensors, data type
converters, and data processing capabilities. Smart
meters augment these with features such as remote
access, telemetry, data storage via remote servers. Such
features can provide information on active/reactive
power, power factor, THDs, etc, for real-time and
historical values [54].

4) Current/Voltage sensors: These can be classified
based on their operating principles, such as electro-
magnetic and optical sensors [52]. Electromagnetic
sensors use electromagnetic principles such as the
conventional current and voltage transformers with
primary/secondary windings on a ferromagnetic core.
Rogowski coil current sensors are used where the
cores are non-magnetic with output voltage being
proportional to the derivative of the current in coil. Hall
effect sensors use the named principle where the sensor
produces the voltage in proportion to the strength of
magnetic field. Giant magnetoresistance sensors utilize
the property of certain materials which change their
resistances under magnetic fields. Additionally, there
are optical sensors that can be used for both current and
voltage sensors. To sense currents, the magnetic field
produced by the conductor is measured by observing
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TABLE 2. Sensors & DSSE.

Ref. Methodology/Focus Contributions Research Gap
[40], | Nondominated sorting ge- | Multi-objective optimization problem aiming to mini- | State estimation is done using only information from
[41] netic algorithm II mize various objectives such as the number of PMUs, | PMU and zero injection buses. Data from AMI and
state estimation uncertainty, sensitivity, and stability. SCADA are ignored. High computation time (as high
as 10 hours for 18 bus system and 112 hours for 141
buses [40])
[42] Integer linear | Minimizes capital cost of PMU installation and maxi- | Only considers PMU measurements. A higher number
programming mizes system observability. Assumes an active distribu- | of measuring devices are needed for similar case studies.
tion network with DERs. Similarly, cost of communication or storage not consid-
ered.
[43] Greedy algorithm, genetic | Optimization tool for sensor and recloser placement. Large networks should also be considered.
algorithm, hybrid GA
[44] Convex optimization Multiple metrics for optimal PMU placement are eval- | Better search algorithms could be used to obtain solu-
uated to obtain a set of bounds for the optimal solution. | tions closer to low bounds. Network reconfiguration is
ignored.
[22] Mixed integer SDP Scalability of the optimal meter placement problem is | Network reconfiguration is ignored.
improved using the Barrier method.
[45] Mixed integer SDP Maximizes worst-case estimation accuracy — Robust | Uncertainty in measurement malfunction is ignored.
placement of sensors. Although computationally efficient, relaxation only pro-
vides a suboptimal solution and a local optimizer is
used.
[46] Modified smart meter | Existing smart meter hardware can be augmented with | The measurement accuracy and resolution of these
(MSM) a precision time protocol to obtain synchronized mea- | meters are low.
surements (similar to PMUs)
[47] Integer linear | Optimal placement of uPMUs considering the number | Only considers uPMU measurements and their installa-
programming, optimal | of uPMUs. A cost model for pPMUs incorporating the | tion costs.
sensor (uPMU) placement | number of channels is also included.
[48] Random forests (based on | Voltage estimation is performed for a low-voltage distri- | CATV sensors are decoupled from grid nodes.
CART & Bagging algo- | bution grid using sensors from cable television (CATV)
rithms) for DSSE networks (5 min resolution). A high-bandwidth and
secure communication infrastructure already exists for
this network.
[49] Evaluate performance | Estimates time synchronism accuracy for PMUs in | Only considers the impact of PMU accuracy on DSSE
classes of PMUs (TO, | distribution network for acceptable DSSE performance. | performance. Other factors, such as the number of PMU
T1, .., T5) wrt DSSE | Multiple indices such as confidence level, total vector | or their location, can also have a significant impact on
accuracy. error, RMSE, and absolute error of Pj,ss are provided | DSSE performance. Assuming full observability during
for DSSE performance evaluation. testing is unrealistic.
[50] Meter placement, error | Studies the impact of flow measurements (current and | The DSSE needs to be in a specific formulation for
analysis of DSSE power) on the estimation of branch currents. Test case | the provided analysis (with branch currents as states).
using an 11 kV 95-bus distribution network. Similar study on DSSE with node voltages as states
could be a good research direction.

the change in light angle (an optical fiber surrounds the
conductor). Voltage sensors utilize the Pockels effect in
which a crystal is used that rotates the polarized light
proportional to the electric field.

B. SENSOR PLACEMENT
It is infeasible to install measurement devices at all the
buses. In reality, the DSSE is performed using only a
few real measurements along with pseudo-measurements.
Herein, the problem of optimal placement of measuring
devices at different nodes of the distribution system becomes
important [22], [42].

There are two main approaches in this area. Firstly, having
a fixed number of measurement devices while performing
optimal placements for the minimum estimation error [55],
[56]. Secondly, finding both the optimal number of measure-
ment devices and their location in the network [57], [58], [59].
This problem is often formulated as an optimization problem
with different objective functions. For example, for the DSSE
problem in (1) and (2), the inverse of the gain matrix G
denotes the error covariance matrix which can be used here to
indicate the quality of estimation accuracy. Similarly, some
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works in the literature have used meter cost or network
observability as an objective function [43]. Table 2 shows
some recent works in this field from the DSSE perspective.
Table 4 in [3] provides a summary on the body of works
in this field. Reference [60] provides a detailed review on
the application of different heuristic algorithms for meter
placement problems.

IV. DATA DRIVEN APPROACHES

Data-driven approaches have been extensively applied in
every facet of DSSE tools in recent years. Such methods use
recorded data to find solutions without resorting to modeling
its dynamics. For example, a neural network can be fed
with a set of inputs and corresponding actual outputs in
order to learn their relationship with no knowledge about
the system dynamics (black-box model). Nonetheless, these
techniques can be very helpful for real-time applications as
most computations are done during offline training. Data-
driven approaches have been successfully used for many
problems such as pseudo-measurement generation [61], state
estimation [62], [63] and sensor placement. Researchers
have also explored probabilistic approaches to address these
issues, e.g., Bayesian techniques or Game theory [25], [64].
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The general structure for machine learning-based tech-
niques is shown in Fig. 3. Usually, this consists of training
data sets, a function approximator like neural networks, and a
training algorithm. Training data is a set of inputs and outputs
created from recorded data from the systems. The function
approximator is selected by the user as per requirements.
Fig. 3 shows a feed forward neural network that is trained
offline and later (after successfully trained and validated)
used to perform estimation. In the following, we discuss
some data-driven approaches applied for DSSE and psuedo-
measurement generation.

Efficacy of the trained model depends on the quality
of training data. For a distribution network, where data is
coming from multiple sources such as AMI or SCADA
with different sampling times, making the best use of such
diverse data can be challenging. Reference [73] formulates
a hybrid DSSE formulation that utilizes both AMI and
SCADA data. A set of feedforward NNs are trained for
different topologies (of a specific distribution network) that
use SCADA measurements (sampled every 15 minutes).
The AMI data, which arrives at an hourly rate, enables
the use of weighted least absolute value to perform state
estimation. Reference [64] proposes the use of smart meter
data to generate injection distributions, which are then
used to train a deep neural network to perform state
estimation (for unobservable distribution systems). This
hybrid approach aims to leverage the complementary nature
of both AMI and SCADA data, leading to more accurate and
reliable state estimation results. Furthermore, incorporating
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advanced machine learning techniques, such as deep neural
networks, can help improve the robustness and adaptability
of the state estimation process, particularly in the pres-
ence of various network topologies and data uncertainties.
Table 3 presents some recent works in literature that have
used data-driven methods to solve different DSSE-related
problems such as estimation, pseudo-measurements gen-
eration, initialization of Newton-based methods, and fault
identification.

V. CHALLENGES AND OPPORTUNITIES

Given the scope of topics discussed in this paper, there can be
many avenues that present great opportunities in the future.
Some of these are presented in the following sections. Note
that a lot of issues and challenges for DSSE for different
applications will be similar as the core functionality remains
same.

A. DEMAND RESPONSE
Demand response (DR) enables loads to alter their con-
sumption motivated by economics. Herein, there can be
two scenarios, 1) The user receives incentives for allowing
load control and load curtailment by the network operator,
2) The user schedules its DR-enabled loads as per the
energy prices [74], [75], [76]. Each of these types of
DR programs creates its own challenges and opportunities.
Although the direct control of loads by the network operator
is an effective tool against system instability, it can raise
privacy concerns among users [74], [77]. In the second
approach, the network operator formulates the energy prices
to motivate the consumers to actively participate. Although
this approach gives the end-user full control, the network
operator will often struggle to fulfill the DR requests of all
users, given that the priority will always be to follow network
constraints. DSSE can support the demand response by
providing the distribution grid’s operating condition based on
available measurements from sensors, smart meters, or other
measurement devices. Based on the state variable estimates
from DSSE, portion of the grid experiencing voltage swings
or high demand can be quickly identified. Utilities can use
this information to perform appropriate demand response
measures, such as using DERs or energy storage to generate
additional power, or reduce energy consumption for certain
areas. Similarly, consumers can use this information in
real-time to monitor their energy usage and exploit the grid
incentives of demand response.
Some of the challenges that DSSE can face when handling
demand response loads include:
1) Measurement accuracy: The accuracy of DSSE,
as explained in Section II, directly depends on the qual-
ity of the measurements provided, as evident from (1).
Poor data quality or insufficient data can result in
inaccurate estimations of the system state, rendering
demand response ineffective or even detrimental.
Therefore, it is crucial that DSSE algorithms are robust
against measurement noise. To this end, there have
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TABLE 3. Data-driven methods and contributions.

Ref.

Focus

Contributions

Research Gap

[65] DSSE, Initialization of op-

Proposes a deep NN as a surrogate model to find an

Size reduction of the DNN with similar accuracy

(little tuning required)

timizer initial guess for an iterative method for a large 8500-
node unbalanced system
[63] DSSE A shallow neural network is trained to learn initial- | The proposed method still requires a Gauss-Newton
ization of Gauss-Newton optimizer — Accommodate | optimizer to find solution.
several types of data, e.g., PMU, pseudo measurements
[61] DSSE,  Pseudomeasure- | Deep RNN is used generate pseudo measurements — | Performace of the proposed network under different
ments Prox-linear network is designed for state estimation | activation functions and training algorithm needs further

study.

[66] DSSE, Sensor Placement

Proposed a novel NN architecture that incorporates the
structure of the grid. Number of neurons and their
interconnection is decided based on the corresponding
distribution network which makes it robust against over
fitting.)

Additional experimental test cases are needed.

using input data prepared from synthetic SimBench time

[67] DSSE DSSE is formulated as sparse signal recovery problem; | Mean absolute percentage error is quite high for many
state variables are based on differential synchrophasors | buses.

[68] Pseudomeasurements Load estimates from monthly billing data — Identified | Overall, the proposed methodology is complicated.
average daily load patterns of unobserved users

[69] Pseudomeasurements Deep belief network are employed to obtain active | Heuristic design of the network
& reactive power injections — handle non-Gaussian
measurement noise.

[70] Pseudomeasurements Supervised learning: Neural networks, Linear regres- | Validated only for PQ buses.
sion, and Support vector machine

[25] Pseudomeasurements Game theory based learning approach. Highly robust | Protocols needs to be designed for interoperability.
against bad data samples. Overall, the proposed method is somewhat involved.

[71] DSSE Real-time state estimates based on neural networks and | Newer ANN architecture could be used. Grid decompo-
PMU data. Multiple parallel ANN structure utilized for | sition appears heuristic and requires further discussion.
a section of the grid for faster computation.

[72] Pseudomeasurements Neural network is used to obtain bus reactive power | Training data generation appears heuristic. Slack bus

voltage estimates have a larger error.

series data.

2)

3)
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been limited studies on topics such as missing data esti-
mation [78], [79], [80], [81] and outlier detection [82],
[83], [84] for demand response-enabled loads. Another
major challenge is managing data collected in various
formats and from different devices [85], [86], [87],
e.g., data in the distribution grid could be coming from
uPMUs and SCADA with different sampling rate and
formats [88].

Privacy and Security: There are several security chal-
lenges associated with deploying DSSE algorithms.
DSSE requires data from multiple sources, including
sensitive information such as power consumption
data. Aggregated data can reveal information about
consumers or the grid, which can be exploited by
attackers [89]. In addition to this, data injection attacks
(i.e., adding fake data into the measurements) can
result in incorrect state estimation, which can lead to
incorrect demand response adjustments. Furthermore,
the models used by DSSE for state estimation should
also be protected against unauthorized access to
prevent attackers from manipulating the estimation
process [90], [91].

Scalability: DSSE needs to process data in real-time
to support demand response actions. As the number
of devices increases, there will be an additional
burden of computation and communication. Hence,
estimation techniques that incorporate data loss in
communication become relevant [92], [93]. Similarly,
estimation approaches that are inherently scalable
should be investigated [94], [95], [96], [97].

4) Regulatory issues: Given the involvement of different

entities, there can be various aspects of regulatory
issues related to demand response and DSSE. DSSE
algorithms require access to sensitive data, which
are regulated by data protection laws such as the
California Consumer Privacy Act (CCPA) [98], [99].
Regulatory bodies such as the North American Elec-
tric Reliability Corporation (NERC) have established
cybersecurity standards for power utilities to ensure
compliance [100], [101].
In addition, some utilities may lose revenue due
to demand response and may thus discourage its
implementation. Regulators must consider how to
incentivize utilities to invest in demand response and
DSSE technologies, while balancing the need for
utilities to maintain their revenue streams.

B. RESILIENCE

DSSE provides the real-time view of distribution system
from available measurements and data [102]. As a result,
this capability is used for various applications, such as fault
detection, restoration, and situational awareness [20], [103],
[104], [105], [106]. Some of the less obvious applications for
DSSE in this regard include:

1) Contingency analysis: The purpose of contingency
analysis is to examine the grid response in the event of
any contingency, such as equipment failure. Herein, the
existing condition of the grid for contingency analysis
can be obtained from the DSSE algorithm as discussed
in [107].
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2) Black start: Black start is the process of restoring a
power system from total shutdown with no external
power. DSSE can be used during this process to iden-
tify states from incomplete information and identify
critical components that need to be energized first.
Furthermore, during the black start process, DSSE can
detect any anomalies. For example, DSSE can identify
a generator whose output is other than the expected
amount [102].

One aspect of system resiliency is the grid’s response
to high-impact and low-probability events. The recovery
problem should be flexible enough to include resources,
such as DR programs, microgrids, and network recon-
figuration, while ensuring that the formulated resilience
problem consistently converges to optimal or near-optimal
solutions [108], [109].

C. HEAVY RENEWABLE ENERGY SOURCES PENETRATION
The presence of renewable power in distribution grids
poses several challenges to DSSE. The output power of
renewable sources is difficult to predict, as it depends on
environmental factors, and the voltage profiles of buses
can be affected by a high number of distributed energy
resources (DERs) [110]. To address these challenges, various
approaches have been proposed. For instance, [110] proposes
a DSSE for medium voltage networks using the Bayes rule to
accommodate measurements and pseudo-measurements with
any statistical model. The estimation observability largely
depends on the pseudo-measurements, and thus [111] studies
the correlation between state estimation and load profile
data. In a similar vein, [112] presents a nonlinear weighted
least squares approach that uses a scenario construction
combining load and solar data to obtain net-load profiles
as pseudo measurements. Herein, the sensitivity of state
estimator accuracy to forecast uncertainties, sensor accuracy,
and sensor coverage level is also studied. The impact of
high levels of photovoltaic (PV) penetration and load on the
accuracy of state estimation is studied in using load and PV
stochastic models [113], [114]. The study shows that higher
PV penetration has a negative impact on state estimation,
both in magnitude and phase. In addition, [115] focuses
on incorporating PV models, including power electronic
devices, within the DSSE framework for active distribution
systems, and [116] includes PV modeling in the DSSE
formulation. Increased fluctuations in the power system due
to renewable energy and demand response can also affect
dynamic security assessment techniques. Instead of the con-
ventional steady-state assumptions of the current operating
points, [117] proposes a non-equilibrium initialization for
dynamic security assessment.

D. VIRTUAL POWER PLANT

Virtual power plants (VPPs) are a collection of multiple DERs
that are managed as a single entity [118], [119]. The VPP
aggregates sources, such as PV, wind, and battery storage,
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through advanced control and communication technologies.
Due to this heterogeneous aggregation, VPPs can help
with better integration of renewable or intermittent energy
sources and even perform ancillary services for the grid,
such as frequency regulation and reactive power control.
The aggregation of DERs by VPP is made possible solely
due to the control and communication infrastructure. Hence,
state estimation by DSSE algorithms play a massive role
in VPP monitoring [120]. Different DERs have differ-
ent characteristics, and accommodating them all can be
challenging. Renewable sources, like solar and wind, are
intermittent in nature, while different storage solutions have
their own charging and discharging characteristics. Moreover,
each source has its own capacity, response time, and ramp
rates. Hence, the DSSE algorithms employed for VPP
applications need to incorporate such diversity into their
formulations [121].

VI. CONCLUSION

In this paper, we present a thorough discussion on distribution
system state estimation along with its formulations and
limitations. To provide a comprehensive document, we also
discuss relevant related topics, such as pseudo-measurements
and sensor placement. Significant references are also tab-
ulated for multiple topics along with research gaps for
further future work. Finally, we discuss some challenges
and opportunities for DSSE from the point of view of some
emerging topics such as demand response and virtual power
plants.
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