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 

Abstract—Low-income communities have challenges obtaining 
equal access to electricity, so it is important to implement energy 
justice. Meanwhile, increasing installations of distributed 
generators (DGs) in distribution systems is a viable means to 
promote energy equity. Therefore, this work explores a new 
planning method for a DG units’ siting and sizing problem with an 
energy equity constraint embedded in the model, and concluding 
guidelines can be used as a rule of thumb for future DG planning 
considering energy equity. In this paper, first, the DG siting and 
sizing problem is formulated as a stochastic bi-level model, where 
energy equity is considered as an energy burden constraint. The 
upper level determines the optimal sites and sizes of DGs under 
investment and energy burden constraints, while the lower level 
optimizes the distribution operation. Next, a solution method is 
proposed by applying the Karush-Kuhn-Tucker optimality 
conditions to convert the stochastic bi-level model to a single-level 
model. A decomposition approach and Progressive Hedging 
Algorithm are used to further simplify the single-level model into 
multiple easy-to-solve subproblems. Finally, numerical studies are 
performed on two systems to verify the effectiveness of the 
proposed model. Technical rule-of-thumb guidelines are presented 
for siting and sizing DGs considering energy equity. 

Index Terms—Distributed generator (DG), energy burden, 
energy equity, Progressive Hedging Algorithm (PHA), siting and 
sizing, stochastic bi-level model. 

NOMENCLATURE 

Abbreviations 

DG     Distributed Generator 
DLMP    Distribution Locational Marginal Price 
KKT    Karush-Kuhn Tucker 
LMP    Locational Marginal Price 
MEB    Minimum Energy Burden 
MINLP   Mixed-Integer Nonlinear Programming 
PHA     Progressive Hedging Algorithm 
SMIP    Stochastic Mixed-integer Programming 

Sets 

Ωு     Set of households in a distribution system 
Ω்     Set of time intervals in a day 
Ωௌ     Set of scenarios 
Ωே     Set of buses 
Ω௅     Set of lines 
Ωீ     Set of DGs 
Ωௌ஼     Set of shunt capacitors 
Ω௅ு     Set of low-income households 

Constants 
, ,

, ,/D s D s
i t i tP Q   Active/reactive load demand of bus i at time t 

 
  

iI      Annual income of household i 

s      Probability of scenario s 

max
DGP      Maximum rated power of DGs to be installed 

DGN      Maximum number of DGs to be installed 

dgc      Investment budget for the DG installation 

0
ie      Energy burden criterion of household i 

, ,
, ,/P s Q s

Sub t Sub t   Active/reactive LMP of the substation at time t 
, ,

, ,/P s Q s
i t i t   Active/reactive bidding price of DG i at time t 

,
s

Sub tV      Bus voltage of the substation at time t 
min max/V V       Minimum/maximum bus voltage 

,minG
iP     Minimum active power of DG i 

,min ,/G G max
i iQ Q  Minimum/maximum reactive power of DG i 

i       Power factor of DG i 

Variables 

ie      Energy burden of household i 

, ,i t s     Active DLMP of bus i at time t 

R
iP      Rated power of DG installed at bus i 

ik             Binary variable indicating whether a DG is 
installed at bus i 

, ,/L s L s
t tP Q    Active/reactive power loss at time t 

, ,
, ,/G s G s

Sub t Sub tP Q  Active/reactive power come from utility grid at 
time t 

, ,
, ,/G s G s

i t i tP Q    Active/reactive power of DG i at time t 

,
s

i tV      Bus voltage of bus i at time t 

/l lr x     Reactance/inductance of line l 

, ,/P s Q s
t t   Lagrangian multipliers associated with 

active/reactive power balance constraints 
 

 

min,
,

max,
,/

s
i t

s
i t









 
Lagrangian multipliers associated with 
inequity of bus voltage and active/reactive 
power constraints 

, ,
, ,/s s

i t i t    Lagrangian multipliers associated with 
inequity of reactive power constraints 

I.  INTRODUCTION 

EW energy infrastructure and energy projects, if not well 
coordinated with social justice perspectives, may increase 

the cost of using electricity for households [1]. For example, the 
increasing electricity price in California has affected the 
proportion of household’s various living expenses and reduced 
their disposable income [2]. What’s worse, this phenomenon is 
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especially noteworthy in low-income households, and the high 
energy burden even leads to them being unable to use electricity 
the same way as they used to. In other words, because of the 
difference in energy burden, households with different incomes 
have unequal access to electricity. As such, energy equity is 
highly important to consider in the developing new energy 
infrastructure and energy projects [3]. 

Energy equity can be defined as the fair production, 
distribution, and use of energy. For households buying 
electricity from the utility, energy equity means that they have 
access to affordable electricity. However, many households 
lack access to affordable electricity due to low income, which 
greatly affects their living quality. It is estimated that more than 
5.2 million households above the Federal Poverty Line in the 
U.S. spend a significant portion of their income on energy [4]. 
To make matters worse, many low-income households struggle 
to access electricity to meet their basic needs [5]. In 2010, 
19822 emergency room visits in 14 states of the U.S. resulted 
from heat stroke due to lack of air conditioning and outdoor 
exposure, and low-income people in rural area accounts for the 
majority [6]. The struggle of low-income households to secure 
basic electricity became particularly obvious during the 
COVID-19 pandemic [7, 8, 9]. 

To address the above problems, some countries have 
proposed or enacted policies to benefit low-income households. 
The U.K. has proposed a metric considering multiple factors to 
determine the level of support needed by households [10]. In 
the U.S., there are two main energy assistance programs, the 
Low Income Home Energy Assistance Program and the 
Weatherization Assistance Program [11, 12]. In addition, 
policies enacted in 2021 in Oregon and Illinois require utilities 
to outline distribution grid investments befitting low-income 
and disproportionately impacted communities [13, 14].  

There are a few technical papers in the literature studying 
methods to realize energy equity at the distribution side. A 
method to quantify the equity on energy expenditure has been 
proposed [15], and a bilevel optimization problem was built to 
obtain the optimal design of retail electricity tariffs [16]. For 
realizing the equity of power curtailment among photovoltaic 
owners, a method that weights power curtailment based on the 
return-on-investment value has been proposed [17]. In the peer-
to-peer energy trading framework, an on-demand share 
allocation transfer model has been established to improve 
energy equity [18]. A quantitative framework has also been 
proposed to support policy decision-making around equitable 
energy interventions, where three interventions are considered, 
weatherization intervention, the deployment of rooftop solar, 
and the deployment of community-owned renewable 
generation [19]. 

As mentioned in [19], the deployment of distributed 
generator (DG) units can be an effective way to realize energy 
equity in distribution operation, because DG units can affect the 
net electricity demand. Also, different operational strategies of 
DG units can lead to different electricity prices. However, there 
is no discussion of proper planning approaches to site and size 
DGs considering energy justice.  

In traditional DG planning, a critical step is to identify the 

best locations and sizes of DG units. This is also called the DG 
siting and sizing problem, commonly based on a mixed integer 
programming model that can be further divided into single-
objective model [20-21] and multiple-objective model [22-23]. 
The single-objective model typically considers power losses, 
voltage profile, investment cost, load shedding, or carbon 
emission, while the multi-objective model considers 
permutations and combination of various single objectives.   

Although the above models and methods succeed under 
certain scenarios, the effectiveness of installing DG units to 
achieve energy equity represents a gap in the literature. As DGs 
are installed close to end consumers, they can be highly 
effective in implementing energy equity in low-income 
communities. With this motivation, in this work, we consider 
energy equity in the planning problem of DG siting and sizing. 
The contributions are summarized as follows:  

 High-level planning guidelines are obtained for the DG 
siting and sizing problem to better achieve energy equity.  

 A stochastic bi-level model considering energy equity in 
a quantitative manner is proposed for siting and sizing DG 
units, where the upper level minimizes the power losses 
and satisfies investment cost and energy equity 
constraints, and the lower level minimizes the generation 
cost and meets the operational constraints.  

 A solution method is proposed to solve the stochastic bi-
level model, which combines Karush-Kuhn Tucker (KKT) 
optimality conditions, time decomposition, and 
Progressive Hedging Algorithm (PHA). The KKT 
optimality conditions convert the bi-level model to a 
single-level model. Then, the time decomposition method 
and PHA simplify the single-level model into multiple 
easy-to-solve subproblems, reducing the dimension of the 
problem and the requirements of computation resources. 

The rest of the paper is organized as follows. Section II 
proposes the stochastic bi-level model for the DG siting and 
sizing problem with energy equity constraints considered. 
Section III describes the scenario extraction methods. Section 
IV proposes the solution methods via PHA. Section V presents 
case studies, and guidelines to improve energy equity via DG 
planning are summarized and discussed. Section VI concludes 
this paper. 

II.  STOCHASTIC BI-LEVEL MODEL FOR DG SITING AND SIZING 

WITH ENERGY EQUITY CONSTRAINT 

It is well understood that the location and size of a new DG 
unit may have an impact on power losses, voltages, generation 
costs and operation conditions. Thus, it is necessary to employ 
a method to evaluate DG’s economic impact without violating 
technical constraints. Here, the distribution locational marginal 
price (DLMP) method is used to model the price at each node, 
since the DLMP is of significant interest for modeling future 
competitive distribution or local markets. Based on the DLMP, 
a stochastic bi-level model is proposed to site and size DG units 
in a distribution network while the energy equity constraints, as 
well as all typical technical constraints, are considered. The 
overall framework is shown in Fig. 1. It should be noted that the 
proposed model is based on normal distribution feeder 
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configuration. If distribution reconfiguration during emergency 
must be considered in a planning problem (e.g., for an area 
prone to extreme weather), it will add much higher complexity 
to the problem to solve, and a potential solution may relax the 
steady-state model while including reconfiguration 
considerations. 

A.  Quantitative Model of Energy Equity 

Unequal access to electricity is a manifestation of energy 
inequity. In this characteristic, energy burden is used to quantify 
the energy equity in this paper. Energy burden is the percentage 
of household income spent on energy costs, representing the 
ability to obtain reliable energy [24]. The mathematical model 
is shown as follows.  

,
, , , ,

S T

D s
i t s i t

i H
s t i

P
e i

I



 


         (1) 

The siting 
and sizing of  

DG units

Power flow 
and DLMP

Lower-level

Obj:  min generation cost
s.t.  :  system operating constraints

Scenario s=1

Scenario s=...

Scenario s=S

Upper-level

Obj:  min power losses over a period of time
s.t.  :  investment constraints
          energy burden constraints

 
Fig. 1. Framework of the proposed stochastic bi-level model. 

B.  Upper-Level Model 

The upper-level model minimizes the power losses of a 
distribution system while satisfying both the investment 
constraints of DG units and the energy burden constraints. The 
decision variables are the DGs’ location and capacity, i.e., 𝒙 =
(𝑃௜

ோ , 𝑘௜), 𝑖 ∈ Ωே. 
min  ,365

S T

L s
s t

s t

P
 

           (2) 

s.t.  
max0 ,R DG

i i NP P k i            (3) 

0 ,
N

i DG N
i

k N i


            (4) 

N

R
i i dg

i

P k c 


             (5) 

,
, , , 0365 ,

S T

D s
i t s i t

s i H
s t i

P
e i

I




 


          (6) 

where (3) is the DG units capacity constraint, which is related 
to the binary variable 𝑘௜. If there is no DG unit installed at the 
bus i, the rated power of the DG unit will be 0; otherwise, the 
DG output can be between 0 and its maximum rated power. 
Equation (4) limits the number of installed DG units. The 
investment budget of DG units is limited by (5), which is 
modeled as a linear function representing variable and fixed 

cost. Also, 𝛼 and 𝛽 in (5) are the constant parameters related to 
investment cost [22, 25]. Further, the investment costs of DG 
units are undertaken by utility companies. Equation (6) 
represents the energy burden constraint at each bus. 

C.  Lower-Level Model 

The lower-level model optimizes the distribution system 
operation, minimizing the system generation cost while 
satisfying the operational constraints. 

min  , , , , , , , ,
, , , , , , , ,

T G

P s G s Q s G s P s G s Q s G s
Sub t Sub t Sub t Sub t i t i t i t i t

t i

P Q P Q   
 

 
       

 
 

   (7) 

s.t.  , , , , ,
, , , 0 :

G N

G s G s D s L s P s
Sub t i t i t t t

i i

P P P P 
 

           (8) 

, , , , ,
, , , 0 :

G N

G s G s D s L s Q s
Sub t i t i t t t

i i

Q Q Q Q 
 

                (9) 

   , , , ,
, , , , , , , , ,

N N

s s P G s D s Q G s D s
i t Sub t i j j t j t i j j t j t N

j j

V V Z P P Z Q Q i
 

          (10) 

min max min, max,
, , ,: , ,s v s v s

i t i t i t NV V V i           (11) 

,min , min, max,
, , ,: , ,G G s R P s P s

i i t i i t i t GP P P i             (12) 

 ,min , , min, max,
, , , ,tan arc  cos : , ,G G s G s Q s Q s

i i t i t i i t i t GQ Q P i       (13) 

,min , ,max min, max,
, , ,: , ,G G s G Q s Q s

i i t i i t i t SCQ Q Q i            (14) 

, , , , , ,
, , , , , ,, : , ,G s G s G s G s s s

i t i t i t i t i t i t GQ Q Q Q i      
 

    (15) 

where (8) and (9) are the active and reactive power balance 
constraints. Equation (10) is the voltage equation, which is 
derived from linearized power flow for a distribution system 
[26,27]. In the voltage equation, 𝑍௜,௝

௉  and 𝑍௜,௝
ொ  are the bus voltage 

change coefficients related to net active and reactive power 
injection. Equation (11) is the bus voltage constraint. Equations 
(12) - (15) are the active and reactive power output constraints.  
Note, the reason for 𝑄̑௜,௧

ீ,௦ = ห𝑄௜,௧
ீ,௦ห  is that there is a cost to 

absorbing and generating reactive power [28]. 
Based on (7) – (15), the Lagrangian function can be written 

as (16). The DLMP is the first-order partial derivative of the 
Lagrangian function with respect to the active power, as shown 
in (17). The DLMP will be employed to calculate the consumer 
payment and then the energy burden. 

 , , , , , , , ,
, , , , , , , ,
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, , ,
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


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 
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 
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 
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 

  
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 

   
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,
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


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
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t i
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 
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(16) 
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 

, ,
, , ,

, , ,
, ,

min, max,
, , ,        ,

N

L s L s
s P s P s Q st t
i t t t tD s D s

i t i t

v s v s P
j t j t j i N

j

P Q

P P

Z i

   

 


 
    

 

    
      (17) 

In (17), the first-order partial derivative of the active power 
losses and reactive power losses w.r.t. the active power can be 
written as (18) and (19) [28]. According to the power flow 
calculation, the branch power losses 𝑃௟,௧

௅,௦  and 𝑄௟,௧
௅,௦  can be 

calculated by (20) and (21) [29]. Then, the first-order partial 
derivative of the active and reactive branch power losses w.r.t. 
the active power can be expressed as (22) and (23).  

,,
,

, ,
, ,

,
L

L sL s
l tt

ND s D s
li t i t

PP
i

P P


  

             (18) 

,,
,

, ,
, ,

,
L

L sL s
l tt

ND s D s
li t i t

QQ
i

P P


  

             (19) 
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, 2
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,
F s F s

l t l tL s
l t l L

l e t

P Q
P r l

V


             (20) 
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, 2
_ ,

,
F s F s

l t l tL s
l t l L
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P Q
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V


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 
,

,, ,, ,
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2 2 , ,QP
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F sl t F sF s F s l

l t l t l t l t N LD s
i t l e t
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P S Q S i l

P V


          


(22) 

 
,

,, ,, ,
, , , ,, 2

, _ ,

2 2 , ,QP

L s
F sl t F sF s F s l

l t l t l t l t N LD s
i t l e t

Q x
P S Q S i l

P V


          


(23) 

where 𝑃௟,௧
௅,௦ and 𝑄௟,௧

௅,௦ are the active and reactive power losses of 

branch l at time t in scenario s. 𝑃௟,௧
ி,௦ and 𝑄௟,௧

ி,௦ are the active and 
reactive power flows through branch l at time t in scenario s.  

𝑆௟,௧
ிು,௦ and 𝑆

௟,௧

ிೂ,௦
 are the sensitivity factors of branch flow w.r.t. 

active power load, and 𝑉௟_௘,௧  is the ending bus (downstream) 
voltage of branch l at time t. 

D.  Compact Notation 

To clearly show the model and facilitate the subsequent 
expression of the solution methods, a compact notation is 
applied to elaborate the proposed stochastic bi-level model. The 
upper level is as follows. 

min  365 ,
S

s
s

g s


  x             (24) 

s.t.  A x b                 (25) 

 365 ,
S

s
s

s


   x d            (26) 

where 𝒙 ∈ ℤା
௣భ × ℝା

௡భି௣భ  are the decision variables, including 
DG units’ location and capacity. p1 and n1 are the number of 
candidate buses for installing DG units and the number of total 
decision variables. 𝑔(𝒙, 𝑠) represents the function of the power 
loss w.r.t decision variables and scenarios. Equation (25) 
represents constraints (3) – (5), 𝑨 ∈ ℝା

௠భ×௡భ , 𝒃 ∈ ℝା
௠భ , and m1 

is the number of constraints in (3) – (5). Equation (26) 
represents constraint (6), 𝒅 ∈ ℝା

ே, and N is the number of buses 
in the distribution system. 𝛱(𝒙, 𝑠) represents the function of the 
energy burden w.r.t decision variables and scenarios. 

The lower level is given by: 

min     , min  , ,s h s x z x        (27) 

s.t.      s s s   W z U Y x         (28) 

where z is the dependent variable affected by x, including bus 
voltage, active power output and reactive power output,𝒛 ∈

ℝା
௡య, 𝑛ଷ = 3 ⋅ 𝑁 − 2. Equation (28) represents constraints (8) – 

(15), 𝑾 ∈ ℝା
௠మ×௡య , 𝑼 ∈ ℝା

௠మ , 𝒀 ∈ ℝା
௠మ×௡భ , and m2 is the 

number of constraints in (8) – (15). 

III.  SCENARIO EXTRACTION AND VARIABLE NODAL LOADS 

In the stochastic bi-level model, the energy burden constraint 
is determined by the DLMP. The DLMP is affected by the 
locational marginal price (LMP) of the wholesale market and 
nodal loads in the distribution system. However, the LMP and 
nodal loads vary every hour. If all historical data is considered, 
the stochastic bi-level model will be difficult or even impossible 
to solve. Therefore, extracting several scenarios from historical 
data to present all scenarios is a viable method.  

A.  Scenario Extraction 

Although the wholesale LMP and nodal loads are dynamic, 
the electricity consumption of households has a certain inertia. 
Further, the nodal loads are influenced by the climate. 
Therefore, we may select the average LMP and average nodal 
loads of each quarter (i.e., season) as the typical scenario of the 
quarter for this planning problem. That is, four scenarios are 
extracted, and each scenario consists of LMP data and nodal 
loads data. In terms of the probability of each scenario, it is the 
ratio of the number of days in the quarter to the total number of 
days in a year, as shown in (29). 

,
365

D
s

s S

N
s            (29) 

where 𝑁௦
஽ is the number of days in the quarter s. 

B.  Variability in Nodal Loads 

In the distribution system, it is difficult to forecast the nodal 
load of each bus [26]. Therefore, it is assumed that there are the 
same normalized active and reactive load profiles for nodal 
loads and the whole system load in each scenario [30, 22]. 
Additionally, to simulate the randomness of the nodal load, a 
random multiplier is applied to each nodal load. 

, ,
, , , ,D s s P D s

i t i t i t t NP M P i         (30) 

, ,
, , , ,D s s Q D s

i t i t i t t NQ M Q i         (31) 

where 𝜏௜,௧
௦  is the random multiplier of scenario s, which follows 

a normal distribution, 𝜏௜,௧
௦ ∼ 𝑁(1,0.04ଶ) [30]. 𝑀௜,௧

௉  and 𝑀௜,௧
ொ  are 

normalized active and reactive load profiles, respectively. 𝑃௧
஽,௦ 

and 𝑄௧
஽,௦  are the active and reactive loads of the whole 

distribution system in scenario s. 

IV.  SOLUTION METHOD 

The mathematical solution methods for the proposed 
stochastic bi-level model include two steps, which are discussed 
in this section. First, the KKT optimality conditions are applied 
to convert the stochastic bi-level problem to a single-level 
problem, i.e., obtaining a stochastic mixed-integer 
programming (SMIP). The big-M method is used to convert 
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some nonlinear constraints into linear constraints. Then, after 
performing the time decomposition, the SMIP problem is 
solved by PHA, which decomposes the original problem into 
multiple easy-to-solve subproblems, reducing the dimension of 
the original problems. 

A.  Solving the Stochastic Bi-level Problem 

The model of the lower level is a convex optimization 
problem. Therefore, its optimum can be obtained by solving the 
KKT optimality conditions [31]. Then, the original stochastic 
bi-level problem can be converted to a single-level problem 
when the KKT conditions are included as constraints in the 
upper level. The single-level problem is a SMIP problem, which 
can be expressed as follows. 

min (2)                       (32) 
s.t. constraints (3)-(6), (8)-(10), (17)-(23), (29)-(31) (33) 

 
,

, , min, max,
, , , ,,

,

,
, min, max,

, ,,
,

1

0,

N

L s
P s P s P v s v st
i t t j i j t j tG s

ji t

L s
Q s P s P st
t i t i t GG s

i t

P
Z

P

Q
i

P

   

  



 
        


      


    (34) 

, , ,
, , , 0,Q s s s

i t i t i t Gi                 (35) 

 
,

, min, max,
, , ,,

,

,
, min, max, , ,

, , , ,,
,

1

0,

N

L s
Q s Q v s v st
t j i j t j tG s

ji t

L s
P s Q s Q s s st
t i t i t i t i t GG s

i t

Q
Z

Q

P
i

Q

  

    



 

 
        


        



     (36)                                                                                             

 min, min
, ,0 0,v s s

i t i t NV V i                       (37) 

 max, max
, ,0 0,v s s

i t i t NV V i                        (38) 

 min, , ,min
, ,0 0,P s G s G

i t i t i GP P i                     (39) 

 max, ,
, ,0 0,P s R G s

i t i i t GP P i               (40) 

   min, , ,min
, ,0 0, ,Q s G s G

i t i t i G SCQ Q i              (41) 

  max, , ,
, , ,0 tan arc  cos 0,Q s G s G s

i t i t i i t GP Q i        (42) 

 max, ,max ,
, ,0 0,Q s G G s

i t i i t SCQ Q i                (43) 

 , , ,
, , ,0 0,s G s G s

i t i t i t GQ Q i      


        (44) 

 , , ,
, , ,0 0,s G s G s

i t i t i t GQ Q i      


        (45) 

where (34) – (36) are the stationary conditions. Equations (37)-
(45) are the complementary slackness conditions, which are 
used to deal with the inequality constraints (11) – (15). Here, 
0 ≤ 𝜒ଵ ⊥ 𝜒ଶ ≥ 0  means that 𝜒ଵ  and 𝜒ଵ  satisfy the condition 
𝜒ଵ ≥ 0, 𝜒ଶ ≥ 0, and 𝜒ଵ ⋅ 𝜒ଶ = 0.  

The complementary slackness conditions (37)-(45) are 
nonlinear, which will make the solution very difficult. To 
address this challenge, the big-M method is applied. Then, each 
complementary slackness condition is reformulated as follows. 

 1 20 ,0 1M M                 (46) 

where M is a big number, and 𝜉 is a binary variable. 
After the substitution, the SMIP model is presented as: 

min  (2)                  (47) 
s.t.  constraints (33) – (36), (46)         (48) 

B.  Time Decomposition and Progressive Hedging Algorithm 

According to the method in Section III, a finite number of 

scenarios with corresponding probabilities have been obtained. 
Therefore, the model in (47)-(48) can be regarded as a 
deterministic mixed-integer nonlinear programming (MINLP). 
Since there are many scenarios in the deterministic MINLP, it 
is difficult to solve by using existing off-the-shelf solvers. In 
literature, the PHA approach has been proposed to solve 
stochastic mixed-integer problems [32,33]. Therefore, PHA is 
used to decompose the model (47)-(48) into scenario-based 
subproblems and solve them in parallel.  

However, the subproblem is also difficult to solve even if it 
is independent of the scenario. Because there are lots of 
variables and constraints, including some nonlinear ones, in 
each subproblem. Thus, based on the Sample Average 
Approximation method [34], the subproblem-independent 
scenarios are further decomposed into smaller subproblems that 
are independent of time. In this paper, △ 𝑡 is selected as the unit 
time interval, and the total time interval T is divided into 𝑁் 
time intervals. Each time interval of one scenario is a smaller 
subproblem. Considering the quadratic relation between nodal 
load and objective function as well as energy burden, the 
probability of each time interval is calculated based on the nodal 
load, as shown in (49). Then, the probability of each 
subproblem is the probability of each time interval multiplied 
by the probability of the corresponding scenario because the 
time decomposition is performed based on each scenario.  

2 2

, ,
, , ,

N T N

s D s D s
t i t i t T

i t i

P P t
  

   
     
   
      (49) 

s s
t t s                  (50) 

where 𝜌௧
௦ is the probability of time t in scenario s, and 𝜌′

௧

௦
 is 

the probability of the subproblem 𝑡 + (𝑠 − 1) ∙ 𝑁். 
After the above analysis, the original SMIP problem can be 

converted to the following problem. Then, we may apply the 
PHA to solve the model (51)-(53) and solve the obtained 
subproblems in parallel, which reduces the requirements on 
computer memory and speeding up the solution. 

min  ,
,365

S L

s L s
T t i t

s i

N P
 

          (51) 

s.t. 
,

, , , 0365 ,
S

D s
i t s i ts

T t i H
s i

P
N e i

I







         (52) 

constraints (3)-(5), (8)-(10), (17)-(23),     
(29)-(31), (34)-(36), (46)   (53) 

where 𝑠′ = 𝑡 + (𝑠 − 1) ∙ 𝑁், 𝛺
ௌ′

= 𝛺ௌ × 𝛺்.  
The detailed overall solution process is shown in Algorithm 

1. It should be noted that there are two convergence criteria: (1) 
each integer variable (i.e., DG location) of all subproblems is 
identical, and (2) the variation of the continuous variables (i.e., 
the rated power of installed DG) of all subproblems does not 
exceed the set threshold.  

Algorithm 1: Overall Solution Process 
1. Conversion of stochastic bi-level problem: Use KKT condition to 
convert the stochastic bi-level problem to a single-level problem, i.e., (47) – 
(48). 
2. Decomposition: Perform the time decomposition, the original model can 
be reformulated as: 

min   365 ⋅ 𝑁் ⋅ ∑ 𝜌′
௧

௦
⋅ 𝑔൫𝒙, 𝑠′൯௦′∈ఆ

ೄ′
 

                                   s.t. 365 ⋅ 𝑁் ⋅ ∑ 𝜌′
௧

௦
⋅ 𝛱൫𝒙, 𝑠′൯௦′∈ఆ

ೄ′
≤ 𝒅 
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                                            𝑨 ⋅ 𝒙 ≤ 𝒃       
                                            𝑾′൫𝑠′൯ ⋅ 𝒛′ ≤ 𝑼′൫𝑠′൯ − 𝒀′൫𝑠′൯ ⋅ 𝒙             
                                           𝝍൫𝑠′൯ ⋅ 𝒛′ ≤ 𝝋൫𝑠′൯                  
where 𝑠′ = 𝑡 + (𝑠 − 1) ∗ 𝑁். 
3. Initialization: Let 𝜁 ← 0  and 𝝕

௦′
఍

← 0 , ∀𝑠′ ∈ 𝛺ௌ′ . For each 𝑠′ ∈

𝛺ௌ′ , compute: 

                                   𝒙
௦′
఍

∈ 𝑎𝑟𝑔 𝑚𝑖𝑛 𝑔 ൫𝒙, 𝑠′൯ 

                                   s.t.     𝛱൫𝒙, 𝑠′൯ ≤ 𝒅௦′ 
                                            𝑨 ⋅ 𝒙 ≤ 𝒃       
                                            𝑾′൫𝑠′൯ ⋅ 𝒛′ ≤ 𝑼′൫𝑠′൯ − 𝒀′൫𝑠′൯ ⋅ 𝒙             
                                           𝝍൫𝑠′൯ ⋅ 𝒛′ ≤ 𝝋൫𝑠′൯           
4. Iterative Update: 𝜁 ← 𝜁 + 1 
5. Aggregation: 𝒙̑఍ ← ∑ 𝜌′

௧

௦
⋅ 𝒙

௦′
఍ିଵ

௦′∈ఆ
ೄ′

 

6. Price Update: 𝝕
௦′
఍

← 𝝕
௦′
఍ିଵ

+ 𝜎 ⋅ ቀ𝒙
௦′
఍ିଵ

− 𝒙̑఍ቁ 

7. Iteration: For each 𝑠′ ∈ 𝛺ௌ′, compute: 

𝒙
௦′
఍

∈ 𝑎𝑟𝑔  𝑚𝑖𝑛 ൜𝑔൫𝒙, 𝑠′൯ + ቀ𝝕
௦′
఍

ቁ
்

⋅ 𝒙 +
𝜎

2
⋅ ฮ𝒙 − 𝒙̑఍ฮ

ଶ
ൠ 

                 s.t.     𝛱൫𝒙, 𝑠′൯ ≤ 𝒅௦′ 
                          𝑨 ⋅ 𝒙 ≤ 𝒃       
                          𝑾′൫𝑠′൯ ⋅ 𝒛′ ≤ 𝑼′൫𝑠′൯ − 𝒀′൫𝑠′൯ ⋅ 𝒙             
                          𝝍൫𝑠′൯ ⋅ 𝒛′ ≤ 𝝋൫𝑠′൯           
If each binary variable of all subproblems is identical, and the variation of 
the continuous variables of all subproblems meets the criteria, (i.e., less than 
the set threshold), then the algorithm ends. Otherwise, go back to Step 4. 

V.  CASE STUDIES 

To illustrate the effectiveness of the proposed model, a 
simple 18-bus feeder and the IEEE 123-bus system were 
applied as the test systems. Simulation studies were performed 
on a Server with Intel Core 6248R CPU and 64GB RAM. 
MATLAB 2022a was the testing environment for the method, 
and YALMIP and GUROBI 9.5.2 were used as the solving tool. 

It should be noted that the DG size does not come at any 
value; rather, it comes at some discrete value. Here, we have 
assumed the increment of DG sizes is 100 kW. In the planning 
model, we have considered their size as a continuous variable 
but will be rounded to the nearest available size. 

A.  18-Bus Feeder System 

The topology of the 18-bus distribution feeder, shown in Fig. 
2, is employed here for two straightforward case studies to 
illustrate the fundamental idea and implication of the energy-
equity-based DG siting and sizing problem. In this simple 
feeder, there are 18 load buses and 17 branches. Each bus may 
correspond to a small community. A shunt capacitor is installed 
at bus 14, which is used to provide reactive power 
compensation to regulate bus voltage. The parameters of the 18-
bus feeder are listed in TABLE I. The extracted scenarios 
include LMP patterns and load patterns, shown in Fig. 3. 

Two cases with the low-income community at bus 6 and bus 
18, respectively, are analyzed and shown in Fig. 2(a) and 2(b). 
Note, each subfigure also shows the resultant DG location, 
which is at bus 16 and 18, respectively. More detailed results 
can be found in the following case study discussions. 

2 3 104 5 6 71 8 9 11 12 13 14 15 17 1816

DG

2 3 104 5 6 71 8 9 11 12 13 14 15 17 1816

Wholesale 
market

DG

(a) Low-income Community at Bus 6

(b) Low-income Community at Bus 18

Wholesale 
market

 

Fig. 2. 18-bus system with a low-income community and a planned DG. 

TABLE I. PARAMETERS OF THE 18-BUS SYSTEM 
Class Parameter Value 

System 
constraints 

𝑉௠௜௡ 0.95 p.u. 
𝑉௠௔௫ 1.05 p.u. 
𝑉ௌ௨௕ 1.0 p.u. 

Load in 96 cases (4 
scenarios, 24 hours each 

scenario)  

Mean: 2.44 MW + 0.36 MVar 
Min: 2.07 MW + 0.28 MVar 
Max: 3.29 MW + 0.52 MVar  

Investment 
constraints 

𝑃௠௔௫
஽ீ  3 MW 

𝑁஽ீ  1 
𝛼 $ 254/kW 
𝛽 $ 3.18 × 10ସ 

𝑐ௗ௚ $ 1 × 10଺ 
Bidding price $ 20/MWh 

Shunt 
capacitor 

Location Bus #13 
Bidding price $ 0/ MVarh 

Capacity 0.5 MVar 
 

(1)  Low-income Community at Bus 6 
a) DG Siting and Sizing Results: In this case study, we 

have assumed that there is a low-income community at bus 6. 
By solving the model (51) – (53), we can obtain the optimal DG 
unit siting and sizing results under a specific energy burden 
constraint. In this case, we first estimate the possible minimum 
energy burden (MEB) by installing possible DG units. 
Essentially, the MEB is obtained by solving the following 
model, i.e., the energy burden of the low-income community is 
the objective function and other constraints remain. 

 
(a) LMP patterns       (b) Load patterns 

Fig. 3 LMP patterns and load patterns. 

min 
,

, , ,8760
LH S

D s
i t s i ts

t
i s i

P

I




 


        (54) 

s.t.   constraint (53)         (55) 
Based on the time decomposition and PHA method, the 

original SMIP is decomposed into 96 subproblems ( △ 𝑡 =
1, 𝑇 = 24, 𝑁் = 24). Therefore, 96 MEB values are obtained 
by solving each subproblem of the model (54) – (55) separately, 
as shown in Fig. 4. The MEB value being 8% means that no 
optimization is required at this subproblem. Because the DLMP 
is lower than the bidding price of the DG units. It can be 
observed that the MEB value varies with the subproblems. The 
reason is that the load value and DLMP in different 
subproblems are different.  

  
Fig. 4. Minimum energy burden of low-income community at bus 6. 
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To make sure the original problem is solvable, the value of 
1.01*MEB is selected as the energy burden constraint. The 
optimal DG unit siting and sizing results are obtained, and one 
DG unit with rated power of 2.5 MW is installed at bus 16, as 
shown in Fig. 2(a).  

Fig. 5 and Fig. 6 show the branch power losses and bus 
voltage of two cases without and with DG units, respectively. 
The power losses of the upstream branch decrease and the 
power losses of the downstream branch increase, because the 
installed DG unit at bus 16 changes the power flow. Overall, 
the accumulated annual power losses of the whole feeder 
decrease from 1015.63 MWh to 551.03 MWh (i.e., hourly 
average losses reduce from 115.94 kWh to 62.90 kWh). In 
addition, it can be observed from Fig. 6 that the voltages of all 
buses are improved. The reason is that the reduced branch flow 
and reduced power losses decreases voltage drop. This is a 
reasonable and expected result. 

Since the energy burden is a composite value over the course 
of a year, the new energy burden of each community (i.e., at 
each node) is re-optimized after installing the DG unit at bus 16. 
Fig. 7 shows the percentage reduction in energy burden for each 
community after installing DG units. The energy burden of the 
low-income community at bus 6 decreased by 8.90% w.r.t. the 
original average energy burden value. Other communities’ 
energy burden values are also reduced. The reason is that 
installation of a DG unit changes the power flow, reduces the 
power losses, and improves the bus voltage. This reduces the 
DLMP or payment of each community. In addition, the 
percentage reduction in energy burden for the community at bus 
6 located upstream of the distribution feeder is not the largest 
one. Because installing DG units reduces the DLMP of buses 
by reducing the marginal power loss price and the marginal 
voltage support price, and the DLMP of buses located in the 
downstream of the distribution feeder can be more affected by 
these two parts than that of buses located in the upstream. 
Therefore, this free-ride scenario is possible when planners 
intend to improve energy equity at a specific location to meet 
the energy burden criterion. This observation is very similar to 
reliability improvement projects which may give a free-ride to 
other consumers. 

 
Fig. 5. Branch power losses in one year. 

 
Fig. 6. Average bus voltage in one year. 

 
Fig. 7. Percentage reduction in energy burden of each community. 

b) Effect of Energy Equity: Table II shows the results of 
different cases with different energy burden constraints. 
Although the DG unit is installed at the same bus in different 
cases, the rated power of the installed DG units is different. It 
can be seen from Table II that as the value of the energy burden 
constraint increases (i.e., the energy burden constraint not being 
binding), the power losses of the whole system gradually 
decrease. It should be noted that the binding energy burden 
constraint causes smaller feasible regions for the optimization 
problem, thus we will achieve a worse objective function than 
the case without energy burden considered.  

In addition, the energy burden of the low-income 
communities will be higher if the energy burden constraint is 
not binding. The energy burden of low-income communities in 
the case without any binding energy burden constraint is 3.91%, 
which is lower than that in the case without DG unit, i.e., 4.09%. 
This observation shows that installing DG units can reduce the 
energy burden of communities over a long period of time. 

The additional cost is the generation cost from higher power 
losses, which is based on the power losses in the case with no 
binding energy burden constraint. Clearly, the case with the 
smallest value of energy burden constraint has the largest 
additional cost. 

TABLE II. RESULTS OF CASES WITH DIFFERENT ENERGY BURDEN VALUE 

ON THE 18-BUS SYSTEM WITH LOW-INCOME COMMUNITY AT BUS 6 
Different cases 1.01*MEB 1.02*MEB  1.10*MEB  1.50*MEB 
DG unit bus (#) 16 16 16 16 

Rated power of DG 
units (MW) 

2.5 2.0 1.8 1.8 

Power losses (MWh) 551.03 509.66 473.30 473.30 
Energy burden of low-
income community (%) 

3.86 3.89 3.91 3.91 

Additional cost ($) 2330.42 1054.40 0 0 

 
(2)  Low-income Community at Bus 18 

a) DG Siting and Sizing Results: In this case study, we have 
assumed that there is a low-income community at bus 18 in this 
case. Based on the previous case with a low-income community 
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at bus 6, the nodal load at bus 6 and bus 18 is swapped with 
each other, and all other buses’ load remains unchanged. 

Fig. 8. shows the MEB of this case, which is obtained by 
solving 96 subproblems of the model (54)-(55). The 
subproblem with an MEB value of 5% does not have to be 
solved, because the DLMP is lower than the DG unit’s bidding 
price. 

 
Fig. 8. Minimum energy burden of low-income community at bus 18. 

In this case, the model with energy burden constraint being 
1.0001*MEB is solved. The optimal DG unit siting and sizing 
result is installing one DG unit with a rated power of 2.1 MW 
at bus 18, the same location as the low-income community. This 
is shown in Fig. 2(b). The branch power losses of cases without 
and with DG units are shown in Fig. 9. Since the power flow is 
changed by the installed DG units, the power loss of the 
upstream branches  𝛺ே஻ = {1,2, ⋯ ,11} decreases, while the 
power loss of the downstream branches 𝛺ே஻ = {13,14, ⋯ ,17} 
increases. The accumulated annual power losses of the whole 
feeder decrease from 952.00 MWh to 599.73 MWh (i.e., hourly 
average losses reducing from 108.68 kWh to 68.46 kWh). Fig. 
10 shows the average bus voltage of two cases, without and with 
DG units. The voltages of all buses increase because of the 
reduced voltage. Again, this is reasonable and expected.  

The percentage reduction in energy burden of each 
community after installing DG units is shown in Fig. 11. 
Evidently, the energy burden of low-income community at bus 
18 is greatly reduced and other communities’ energy burden 
also decreases. The reason is that the DLMP of communities 
decrease with the reduced power losses and bus voltage 
deviation. Therefore, the electricity bill decreases and the 
energy burden decreases. The low-income community in this 
case is at the downstream end of the distribution feeder, i.e., bus 
18, and its percentage reduction in energy burden is the largest 
one.   

 
Fig. 9. Branch power loss in one year. 

 
Fig. 10. Average bus voltage in one year. 

 
Fig. 11. Percentage reduction in energy burden of each community. 

b) Effect of Energy Equity: The results of different cases with 
different energy burden constraints are shown in Table III. 

From Table III, there are different DG unit locations and 
rated power in different cases. The power losses and additional 
cost decrease if the energy burden value in constraint is relaxed 
(i.e., being a larger value). But the final energy burden of the 
low-income community gradually increases, because the 
binding constraint decreases the feasible region of this 
optimization model. Similar to the previous case with the low-
income community at bus 6, although the energy burden 
constraint is not binding in the optimization model, the final 
energy burden of community 18 is still lower than that of the 
case without installing DG units.  

TABLE III. RESULTS OF CASES WITH DIFFERENT ENERGY BURDEN VALUE 

ON THE 18-BUS SYSTEM WITH LOW-INCOME COMMUNITY AT BUS 18 
Different cases 1.0001*MEB 1.003*MEB 2*MEB 2.5*MEB 
DG unit bus (#) 18 17 16 16 

Rated power of DG 
units (MW) 

2.1 2.1 2.3 2.3 

Power losses (MWh) 599.73 582.88 544.92 544.92 
Energy burden of low-

income community 
(%)  

2.88 2.89 2.91 2.91 

Additional cost ($) 1321.20 936.43 0 0 

 
(3)  Guidelines Obtained From the 18-Bus Feeder System 

By a comparison of the two 18-bus system case studies, the 
following conclusions can be obtained, which can be regarded 
as general guidelines for DG siting and sizing problems 
considering energy equity.  
 If the low-income community is located in the downstream 

section of a distribution feeder, DG units tend to be installed 
near this community because this will significantly reduce the 
DLMP and thus energy burden, meanwhile improving 
distribution voltages. In contrast, if the low-income 
community is not in the downstream of the feeder, DG units 
may not be installed near the community due to technical 
constraints like voltage requirement. 
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 Different energy burden requirements (i.e., energy burden 
values in optimization constraint) lead to different economic 
costs, which can be calculated by the model and solution 
method proposed in this paper. 

 Under the same investment conditions, installing DG units 
reduces the energy burden more significantly for low-income 
communities located in the downstream of the feeder. Thus, 
planners may give higher priority to these downstream low-
income communities if many similar low-income ones spread 
out within the same feeder. 

B.  IEEE 123-Bus System 
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Fig. 12. Modified IEEE 123-bus system.  

1) System Description: Fig. 12 shows the topology of the 
modified IEEE 123-bus system. There are four buses 𝛺ௌ஼ =
{46,75,94,109} with shunt capacitors to regulate the voltage of 
this system. Communities at bus 𝛺௅ு = {51,83,96,114}  are 
assumed to be low-income. The parameters of this system are 
listed in Table IV. Additionally, the LMP patterns of extracted 
scenarios are the same as that in the 18-bus feeder system, and 
corresponding load patterns are obtained. 

TABLE IV. PARAMETERS OF THE MODIFIED IEEE 123-BUS SYSTEM 
Class Parameter Value 

System 
constraints 

Low-income 
community location 

Bus # 51, 83, 96,114 

𝑉௠௜௡ 0.95 p.u. 
𝑉௠௔௫ 1.05 p.u. 
𝑉ௌ௨௕ 1.0 p.u. 

Load in 96 cases (4 
scenarios, 24 hours each 

scenario) 

Mean: 6.00 MW + 1.45 MVar 
Min: 5.00 MW + 1.16 MVar 
Max: 7.69 MW + 2.08 MVar  

Investment 
constraints 

𝑃௠௔௫
஽ீ  2 MW 

𝑁஽ீ  5 
𝛼 $ 254/kW 
𝛽 $ 3.18 × 10ସ 

𝑐ௗ௚ $ 1 × 10଻ 
Bidding price $ 20/MWh 

Shunt 
capacitor 

Location Bus #  46,75,94,109 
Bidding price $ 0/ MVarh 

Capacity 0.5 MVar 
 

2) DG Siting and Sizing Results: Through solving 
subproblems of model (54) – (55), the MEB of four low-income 
communities is obtained, as shown in Fig. 13. The subproblem 
with an MEB of 8% means that its DLMP is lower than the DG 
units’ bidding price and the energy burden constraint is always 

satisfied. 

 
Fig. 13. Minimum energy burden of low-income households. 

The 1.05*MEB is selected as the energy burden constraint 
for ensuring the solvability of the bi-level model. The optimal 
strategy is to install DG units on bus 𝛺ௗீ =
{35,76,83,96,114}, and with rated power of 0.8 MW, 1.6 MW, 
0.7 MW, 1.6 MW, and 1.6 MW, respectively. Fig. 14 shows the 
branch power losses of two cases without DG units and with 
DG units. It is evident that the power losses on the branch 
𝛺ே஻ = {1,8,9,13,18,52, 53, 54, 57, 60}  greatly decrease, the 
power losses on the branch 𝛺ே஻ = {72, 86, 87, 89, 96,108,
109,110,112, 113, 114}  increase slightly. Overall, the 
accumulated annual power losses of the whole system decrease 
from 2201.20 MWh to 1532.47 MWh (i.e., hourly average 
losses reduce from 251.28 kWh to 174.94 kWh). This is 
because installation of DGs reduces the branch flows in general. 

The average bus voltages of two cases without DG units and 
with DG units are shown in Fig. 15. It can be seen that the 
voltage of each bus is greatly improved. The reason is that the 
voltage drop on branches decreases as the power through the 
branch decreases and the power losses reduce as well. 

Fig. 16 shows the percentage reduction in energy burden of 
each community after installing DG units. Evidently, the energy 
burden of low-income communities is reduced by {4.20%, 
14.18%, 14.98%, 17.05%}, and other communities’ energy 
burden is also reduced. Because installed DG units decrease the 
DLMP by reducing power losses and improving bus voltages, 
which reduces communities’ electricity bills. Additionally, the 
energy burden of low-income communities at buses 83, 96, 114 
decreased significantly, but the energy burden of community at 
bus 51 decreased slightly. The reason is that bus 51 is relatively 
located upstream of the system and the decrease of its DLMP is 
smaller. This is consistent with the observation from the studies 
of the 18-bus feeder. 

 
Fig. 14. Branch power loss in one year. 
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Fig. 15. Average bus voltage in one year. 

 
Fig. 16. Percentage reduction in energy burden of each community. 

3) Effect of Energy Equity: When the value of the energy 
burden constraint changes, different results are obtained, as 
shown in Table V. It can be seen from Table V that smaller 
energy burden constraint causes lower power losses, a larger 
final energy burden, and less additional cost. Also, the low-
income community’s final energy burden value {3.64%, 3.73%, 
3.56%, 3.20%} in the case with 1.7*MEB constraint is lower 
than that of the case without DG units, i.e., {3.79%, 4.07%, 
3.91%, 3.61%}. This is because DG unit installation reduces 
electricity bills for a period of time. Additionally, if comparing 
the DG units’ buses in two cases of 1.05*MEB and 1.08*MEB, 
we can also obtain the following: for low-income communities 
at the downstream of a distribution system, DG units will be 
installed near the community when the energy burden 
constraint is binding. However, for low-income communities 
which are not on the downstream of the system, there is no 
pressing need to install DG units near the low-income 
community. This is consistent with the observations from the 
studies of the 18-bus feeder. 

TABLE V. RESULTS OF CASES WITH DIFFERENT ENERGY BURDEN VALUE 

ON THE MODIFIED IEEE 123-BUS SYSTEM 
Different cases 1.05*MEB 1.08*MEB 1.3*MEB 1.7*MEB 

DG unit bus (#) 
35, 76, 83, 

96, 114 
35, 65, 76,  

96, 114 
35, 65, 76, 

90, 114 
35, 65, 76, 

90, 114 
Rated power of 
DG units (MW) 

0.8, 1.6, 0.7, 
1.6, 1.6 

1.5, 0.5, 1.6, 
1.0, 1.6 

1.6, 1.6, 1.6, 
0.5, 0.9 

1.6, 1.6, 1.6, 
0.5, 0.9 

Power losses 
(MWh) 

1532.47 1432.50 1100.20 1100.20 

Energy burden of 
low-income 

communities (%) 

3.66, 3.65, 
3.47, 3.11 

3.67, 3.73, 
3.54, 3.14 

3.64, 3.73, 
3.56, 3.20 

3.64, 3.73, 
3.56, 3.20 

Additional cost ($) 10784 8207.9 0 0 

C.  Performance Analysis of Solution Method 

1)Computation Time: Table VI shows the computation time 
of different cases. The computation time used by Cplex or 
Gurobi to directly solve the coupling problem is NA (out-of-
memory error), which means the result cannot be obtained if 

these two solvers are directly employed to solve the original 
coupling problem. However, the result can be obtained by the 
proposed solution method. Although the solution time for the 
123-bus system is somewhat long, it remains acceptable given 
the offline nature of this planning problem. 

TABLE VI. COMPUTATION TIME OF DIFFERENT CASES 

Different cases 
Low-income 
community at 

bus 6 

Low-income 
community at 

bus 18 

123-bus 
system 

Computation time used by 
Cplex or Gurobi to directly 
solve the coupling problem 

NA (Out-of-
memory error) 

NA (Out-of-
memory error) 

NA (Out-of-
memory 

error) 
Computation time used by 

the proposed solution method 
(min) 

2.93 2.75 115.53 

 
2) Convergence Performance: The maximum distance 

between solutions in iterations and the optimal solution of 
different cases is shown in Fig. 17. Evidently, the distance 
forms a decreasing sequence, which is consistent with the 
convergence theorem in [33]. Additionally, the solving of the 
18-bus feeder system converges at the 5th and 4th iteration, and 
the solving of the 123-bus system converges at the 8th iteration. 

 
Fig. 17. Convergence curve of different feeder cases. 

3) Calculation Error: For analyzing the errors of solution 
method, the enumeration method is used to obtain solutions for 
the 18-bus feeder system, then compare results obtained by the 
enumeration method and proposed solution method. Table VII 
shows the errors of different cases. Evidently, the calculation 
error is 0, indicating the optimality of the obtained solutions. 

TABLE VII. ERROR OF DIFFERENT CASES 

Different cases 
18-bus (Low-income 
community at bus 6) 

18-bus (Low-income 
community at bus 18) 

Optimal strategy obtained 
by enumeration method 

DG unit bus is #16 
Rated power is 2.5 

MW 

DG unit bus is #18 
Rated power is 2.1 

MW 
Optimal strategy obtained 
by the proposed solution 

method 

DG unit bus is #16 
Rated power is 2.5 

MW 

DG unit bus is #18 
Rated power is 2.1 

MW 
Error 0 0 

 

VI.  CONCLUSION 

In this paper, a stochastic bi-level model is proposed to 
formulate the DG siting and sizing problem with energy equity 
constraint modeled by energy burden. Then, the stochastic bi-
level model is converted to a single-level model by KKT 
optimality conditions, and the single-level model is solved by 
the proposed time decomposition method and PHA. Numerical 
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studies are performed on an 18-bus distribution feeder and the 
IEEE 123-bus system, which verifies that installation of DG 
units is an effective approach to implement energy equity. 
Further, general guidelines for DG units’ siting and sizing 
problem with energy equity constraint are obtained as follows. 
Notably, these guidelines hold substantial significance in real-
world practice in addressing the DG planning problem, 
particularly when faced with challenges such as missing 
measurements, incomplete data, or a lack of analytical 
resources. If planners are unable to perform a comprehensive 
analytical or optimization study, the guidelines outlined below, 
especially the first and second bullets, can serve as valuable 
planning references without the need for detailed analysis. 
 DG units are not always installed near low-income 

communities, even considering the energy equity constraint. 
The decision of whether DG units are installed near low-
income communities depends on the communities’ location 
in the system as well as technical constraints.  

 When multiple low-income communities are spread 
throughout a system, it is generally more effective to install 
DGs near the low-income communities in the downstream 
of feeders.  

 To achieve a lower level of energy burden for low-income 
communities, a quantitative economic evaluation is needed 
for accurate siting and sizing such as the proposed method, 
which is related to the system topology and the location of 
low-income communities, as well as the technical and 
energy burden constraints.    
In the future, models with different types of DG units, like 

solar photovoltaics, wind turbines, and battery storages, will be 
further studied. Also, time-coupling features of devices like 
battery storages can be studied via decomposition by the 
Bellman Equation in Markov process approaches or solved by 
deep learning. Other than DG installation, improvement on 
distribution system assets like upgrading distribution 
cables/transformers and installing reactive power compensation 
facilities may have considerable impacts on energy equity, not 
only economically but also in the sense of energy service 
reliability and quality. These can be possible future topics. 
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