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Abstract—Phasor measurement units (PMUs) provide useful
data for real-time monitoring of the smart grid. However, there
may be time-varying deviation in phase angle differences (PADs)
between both ends of the transmission line (TL), which may
deteriorate application performance based on PMUs. To address
that, this paper proposes two robust methods of correcting
time-varying PAD deviation with unknown parameters of TL
(ParTL). First, the phenomena of time-varying PAD deviation
observed from field PMU data are presented. Two general
formulations for PAD estimation are then established. To simplify
the formulations, estimation of PADs is converted into the optimal
problem with a single ParTL as the variable, yielding a linear
estimation of PADs. The latter is used by second-order Taylor
series expansion to estimate PADs accurately. To reduce the
impact of possible abnormal amplitude data in field data, the
IGG (Institute of Geodesy & Geophysics, Chinese Academy
of Sciences) weighting function is adopted. Results using both
simulated and field data verify the effectiveness and robustness
of the proposed methods.

Index Terms—Correction, line parameters, parameter
identification, phasor measurement, time-varying phase angle
difference deviation.

I. INTRODUCTION

PHASOR measurement units (PMUs) can provide voltage
and current phasors for the smart grid [1]. Various appli-

cations [2] are developed using data from PMUs, such as early
event detection [3], state estimation [4], [5], and parameter
estimation [6]. However, due to GPS signal loss [7], GPS spoof
attacks [8], [9], manipulation attacks [10], timestamp shift in
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PMU data [11], power system frequency deviation [12]–[14],
etc., the phase angle of PMU data may become less accurate,
which could seriously affect their applications. Thus, it is
desirable to develop methods that can improve the accuracy
of PMUs.

Existing works to improve accuracy of PMU phase angle
data can generally be divided into the following three main
categories: (1) PMU calibration based on calibrators; (2) PMU
algorithm improvement; and (3) PMU data calibration based
on a power system model.

Methods in category 1 correct the PMU data based on
PMU calibrators [15], [16]. Specifically, the same test signals
are sent to both the PMU to be tested and a high precision
calibrator. PMU is then calibrated by referring to measured
results of the calibrator. These methods are not dependent
on power system topology and can directly calibrate a single
PMU. However, they can only calibrate PMU offline rather
than online and they require additional calibration equipment,
which is less economical.

The methods in category 2 improve PMU algorithms [17]–
[20] to correct phase angle. In [17], a phasor estimation
algorithm is proposed based on the Clarke transform, which
can reduce spectrum leakage-caused error. These methods
can improve the performance of PMU algorithms effectively.
However, they cannot correct errors from current transformer
(CT), potential transformer (PT), and PMU device (including
analog-to-digital converter, phasor data concentrator, etc.).

Methods in category 3 correct PMU phasors based on
the power system models [14], [21]–[30]. These methods do
not require additional calibration equipment, and can correct
the error caused by a PMU device and transformer online.
Specifically, in [21]–[24], PMU data are corrected based on
state estimation. For example, in [21], by compensating the
phase angle data of PMU at different buses, the location of
PMU with deviation and its phase angle deviation are obtained
based on state estimation. In [14], [25]–[29], based on the
π-type equivalent model of TL and PMU data at both ends
of TL, phase angle data are corrected. For example, in [28],
a framework for online bias detection and calibration of
PMU measurements using density-based spatial clustering of
applications is presented, which considers the error in ParTL.
In [30], an online calibration method of voltage transformers
is presented by adding good quality measurements at optimal
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locations of the system instead of pre-calibrated PMU.
It is worth noting that, in [21]–[27] and [30], the ParTL

are assumed to be known. However, they may change due to
weather conditions, and the aging process, resulting in a devia-
tion between the offline value and the true value of ParTL [31].
To deal with this problem, a method to correct the constant
PAD deviation independent of ParTL is proposed in [29].
However, by observing field PMU data, the PAD deviation
can be time-varying [26]. On the other hand, due to worn-
out equipment [32] and communication channel blockage [33],
field data are subject to data quality issues [34]. For example,
in [34], abnormal data is found in field PMU amplitude data.

To this end, this paper proposes two robust methods of cor-
recting time-varying PAD deviation without knowing ParTL.
The main contributions are as follows:

1) Two robust methods for correcting phage angle data with
time-varying PADs deviation are proposed without knowing
ParTL. The two methods could be both used for ParTL
identification when time-varying PAD deviation exists. This
differentiates our work as compared to [29], where constant
PADs are assumed.

2) The proposed methods have high computational effi-
ciency and are suitable for online applications. In particular,
general formulations for the estimation of PADs at multiple
snapshots are established. Based on the relationship between
PADs and ParTL, high dimensional PAD estimation at multiple
snapshots is successfully converted into the optimal problem of
low dimensional ParTL estimation. This leads to computation
burden reduction.

3) To suppress the influence of abnormal amplitude data
caused by channel blockage, worn-out equipment, etc., the
IGG method (Institute of Geodesy & Geophysics, Chinese
Academy of Sciences) is used to divide data into three
categories based on distribution of residual, including normal
measurement, available measurement, and harmful measure-
ment. Different categories of data are given different weights
to improve the robustness of the proposed method.

The rest of the paper is organized as follows: In Section II,
time-varying PAD deviation phenomena are presented. In
Section III, based on PMU data at multiple snapshots, two
formulations for PAD correction are established. In Section IV,
simplification and solution methods for PADs are presented,
and adaptive robust estimation of PADs based on IGG method
is presented. In Section V and VI, numerical tests and field
data results are demonstrated. Finally, conclusions are drawn
in Section VII.

II. TIME-VARYING PAD DEVIATIONS OBSERVED FROM
FIELD PMU DATA

In this section, the model and power flow equations of TLs
are presented first, and then, the time-varying PAD deviation
observed from field PMU data is analyzed.

A. Modeling of TLs

High-voltage TLs can be described using the π-type equiv-
alent positive-sequence model, as shown in Fig. 1.

m n

Z = R + jX

Pm + jQm Pn + jQn

Vm = Vm∠j
Vm Vn = Vn∠j

Vn

Im = Im∠j
Im In = In∠j

In

2

Y
= j

B

2
= j

Y

2

B

2

Fig. 1. A π-type equivalent circuit using lumped parameters.

From Fig. 1, active power flows are represented as

Pm = gV 2
m − VmVn cos θV − VmVnb sin θV (1)

where g = R/(R2 +X2) > 0, b = −X/(R2 +X2) < 0 and
θV = arg(Vm/Vn), i.e., the true value of PADs.

B. Time-varying Deviation in PADs Observed from Field PMU
Data

For a real-world 500 kV, 90.3 km long TL with parameters
R = 1.3781 Ω, X = 23.8415 Ω, Y = 4.1280 × 10−4 S in
China, the field PMU data (data directly obtained from PMUs
in realistic power systems) are obtained, including voltage and
current phasors, and calculated active and reactive power. Field
PADs of PMU across the TL can be directly obtained based on
PMU data: see the orange dashed line shown in Fig. 2. Note
that since the actual PADs are unknown, PADs from power
flow calculations based on offline ParTL are used as reference
value instead of actual PADs, see the blue solid line in Fig. 2.
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Fig. 2. The estimated and field PADs across both ends of the TL.

In Fig. 2, PADs based on power flow calculation and offline
ParTL are constant, i.e., 0.91◦, which is consistent with power
fluctuations. However, field PADs fluctuate from 0.83◦ to
1.15◦. Thus, there is a time-varying deviation between the
field PADs and estimated PADs. This paper aims at correcting
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the above time-varying PAD deviations without knowing the
true value of ParTL.

III. FORMULATIONS FOR PAD CORRECTION BASED ON
MULTIPLE SNAPSHOTS OF PMU DATA

In this section, the relationship between the phase angle data
and PADs is first presented. Two estimation models for PADs
using two snapshots are then established. Formulations for
PADs estimation at multiple snapshots are finally established.

A. Relationship between PADs and Phase Angle Data

To distinguish the true and field electrical quantity, the
notation with superscript ′ is used to denote field PMU data,
i.e., V ′

m = V ′
m∠φ′

Vm, V ′
n = V ′

n∠φ
′
V n, I ′

m = I ′m∠φ′
Im,

I ′
n = I ′n∠φ

′
In, P ′

m, P ′
n, Q′

m, Q′
n, while the notation without

superscript is used to denote the true value. Besides, let θ′V
denote the field PADs, i.e., θ′V = ∠(V ′

m/V ′
n), and the PAD

deviation in field PMU data shown in (2), i.e.,

∆θV = θV − θ′V = (φVm − φV n)− (φ′
Vm − φ′

V n) (2)

Generally, for one PMU, synchronization between the cur-
rent and voltage phasors is good locally, thus, the difference
between voltage phase angle and current phase angle is
accurate, i.e.,

φV n − φIn = φ′
V n − φ′

In

φVm − φIm = φ′
Vm − φ′

Im (3)

Furthermore, taking the voltage phase angle data at bus m
as a reference, the true value of phase angle data at both ends
can be expressed as,

φVm = φ′
Vm φIm = φ′

Im φV n = φ′
Vm − θV

φIn = φV n − (φV n − φIn) = φ′
Vm − θV − (φ′

V n − φ′
In)

(4)

where the phase angle data at both ends of the TL can be
represented by PAD. Equation (4) provides a basis for the
subsequent establishment of the objective function to reduce
the number of variables. Note this paper takes PADs (θV )
as unknown time-varying variables. It is different from [29]
which assumes PAD deviations (∆θV ) as a constant variable.

Since the phase angle is a relative value, any bus could be
used as a reference bus. The phase angle of the reference bus
is 0 relative to itself. Thus, for PAD estimation across the TL,
regardless of whether the phase angle data of the reference
bus are calibrated or not, the phase angle data of the reference
bus could be regarded as correct.

B. Estimation of PADs using Two Snapshots

In this subsection, two PAD estimation formulations based
on the PMU data at two snapshots are established.
1) Model fY based on Parallel Admittance

According to [35], parallel admittance is expressed as

Y

2
=

Im + In
Vm + Vn

(5)

Using the PMU data under two different power flows, the
current and voltage phasors at both ends of the TL hold, i.e.,

Im1 + In1
Vm1 + Vn1

=
Im2 + In2
Vm2 + Vn2

=
Y

2
(6)

where Im1, Im2, Vm1, Vm2, In1, In2, Vn1, Vn2 denote the
true values of phasors under power flows 1 and 2. (6) can be
further rewritten as

f∗
Y = (Im1 + In1)(Vm2 + Vn2)− (Im2 + In2)(Vm1 + Vn1)

= 0 (7)

With the field PMU voltage and current phasor amplitudes
and (4), (7) can be rewritten as (8).

f∗
Y(θV 1, θV 2) =

(I ′m1∠φ
′
Im1 + I ′n1∠(φ

′
Vm1 − θV 1 − (φ′

V n1

− φ′
In1(V

′
m2∠φ

′
Vm2 + V ′

n2∠(φ
′
Vm2 − θV 2))

− (I ′m2∠φ
′
Im2 + I ′n2∠(φ

′
Vm2 − θV 2 − (φ′

V n2

− φ′
In2(V

′
m1∠φ

′
Vm1 + V ′

n1∠(φ
′
Vm1 − θV 1)) = 0 (8)

In (8), θV 1 and θV 2 respectively denote true PADs to be
solved under power flows 1 and 2. (8) has unknown variables
θV 1 and θV 2, and must be solved using the PMU data under
different power flow conditions.

Due to voltage and current scaling and quantization error,
the field data contains measurement noise. Thus, even if θV 1

and θV 2 are the true value of PADs, f∗
Y(θV 1, θV 2) is not

exactly zero, i.e.,

fY(θV 1, θV 2) = εY (9)

where εY is the residual error of fY. Thus, solving (9) directly
will be affected by noise. Instead, the PADs can be obtained
by solving the following minimization problem:

min |fY(θV 1, θV 2)|, θV 1, θV 2 ∈ (−π, π] (10)

where | · | represents the module of complex number.
2) Model fZ based on Series Impedance

According to [35], the equivalent impedance of the TL can
also be expressed as

Z =
V 2
m − V 2

n

ImVn − InVm
(11)

Similar to Section III-B. 2), the current and voltage phasors
under two power flows satisfy

V 2
m1 − V 2

n1

Im1Vn1 − In1Vm1
=

V 2
m2 − V 2

n2

Im2Vn2 − In2Vm2
= Z (12)

Furthermore, (12) can be rewritten as

f∗
Z =(V 2

m2 − V 2
n2)(Im1Vn1 − In1Vm1)

− (V 2
m1 − V 2

n1)(Im2Vn2 − In2Vm2) = 0 (13)

Similar to (8), based on the field PMU voltage and current
measurements, (13) can be rewritten as an equation with the
true value of PADs as variables, see (14).

f∗
Z(θV 1, θV 2) =

((V ′
m2∠φ

′
Vm2)

2 − (V ′
n2∠(φ

′
Vm2 − θV 2))

2)
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(I ′m1V
′
n1∠(φ

′
Im1 + (φ′

Vm1 − θV 1))− I ′n1V
′
m1∠((φ

′
Vm1

− θV 1 − (φ′
V n1 − φ′

In1)) + φ′
Vm1)− ((V ′

m1∠φ
′
Vm2)

2

− (V ′
n1∠(φ

′
Vm1 − θV 1))

2)(I ′m2V
′
n2∠(φ

′
Im2

+ (φ′
Vm2 − θV 2))− I ′n2V

′
m2∠((φ

′
Vm2 − θV 2

− (φ′
V n2 − φ′

In2)) + φ′
Vm2)) = 0 (14)

If measurement noise is considered, (14) becomes

fZ(θV 1, θV 2) = εZ (15)

where εZ is the residual error of fZ. Similarly, PADs can also
be obtained by solving the following minimization problem
(16):

min |fZ(θV 1, θV 2)| , θV 1, θV 2 ∈ (−π, π] (16)

As (10) and (16) are objective functions with similar forms,
they can be written uniformly as

min |f(θV 1, θV 2)| , θV 1, θV 2 ∈ (−π, π] (17)

where f includes fZ and fY. Furthermore, it is necessary to
extend (17) to estimate the PADs at multiple snapshots.

C. Estimation of PADs using Multiple Snapshots

The PMU data under two different power flows with 2n
snapshots are needed to expand (17). Let M ′

i = [V ′
m,i, φ

′
Vm,i,

V ′
n,i, φ

′
V n,i, I

′
m,i, φ

′
Im,i, I

′
n,i, φ

′
In,i, P

′
m,i, P

′
n,i, Q

′
m,i, Q

′
n,i]

represent field PMU measurement vectors at snapshots i. M ′
1,i

and M ′
2,i denote the measurement vectors at snapshot i under

power flows 1 and 2. The data combination method is shown
in Fig. 3.

f1 f2

Measured PMU measurements at snapshot i

Power flow

condition 1 

Power flow

condition 2 

fnfi

M′1

2′M

M′
1,2

M′1,3 M′1,n

M′2,1 M′2,2 M′2,3 M′2,n

M′1,1

Fig. 3. The data combination method.

Based on the above data combination method, (17) is
extended as

minF (θV 1,1, θV 2,1, · · · , θV 1,n, θV 2,n)

= min
n∑

i=1

|fi(M ′
1,i,M

′
2,i, θV 1,i, θV 2,i)| (18)

where M ′
1,i and M ′

2,i are the known PMU measurements,
while θV 1,i, θV 2,i are the unknown variables to be solved.
When solving (18), some attention needs to be paid to:

1) For each fi, two variables are solved based on two PMU
snapshots, which means the equation has low measurement
redundancy. Thus, estimation results (θV,i) are highly suscep-
tible to measurement noise.

2) There are 2n variables in (18), which require extensive
computations. It needs to be simplified for computational
efficiency improvement without loss of accuracy.

IV. PROPOSED ESTIMATION METHODS FOR PADS

A. Proposed Solution Framework

The framework of the proposed methods is shown in Fig. 4
and it contains linear estimation for PADs, rough identification
for ParTL, and accurate estimation for PADs. Detailed steps
for the proposed methods are in Fig. 4.

Step 1: Linear estimation of PADs
In this step, the approximated relationship between PADs

(∆θV,i) and reactance (X) is derived first. With that rela-
tionship, a simplified formulation to estimate reactance is
obtained. Furthermore, with the result of estimated reactance,
linear estimation for the PADs can be obtained with the above
relationship.

Step 2: Rough identification for ParTL
In this step, first, the phase angle data at both ends of the TL

are estimated with Eq. (4) and the linearly estimated PADs.
Then, the ParTL is identified roughly.

Step 3: Accurate estimation for PADs
In this step, the approximated relationship between the

PADs and series conductance (g) and admittance (b) is derived
first, with the second order Taylor expansion at the linear
estimation of PADs.

With the above relationship, the simplified formulation to
estimate the series conductance (g) and admittance (b) is
obtained.

Furthermore, with the results of estimated series conduc-
tance and admittance, PADs can be obtained accurately with
the above relationship.

Relationship between X and θV,i

As Taylor expansion point 

As initial values 

Step 1: Linear

estimation for PADs 

Step 2: Rough

identification for ParTL 

Step 3: Accurate

estimation for PADs 

Relationship between g,b and θV,i

minF (θV 1,1, θV 2,1, · · · , θV 1,n, θV 2,n) = min
n∑

i=1

|fi(M ′
1,i,M

′
2,i, θV 1,i, θV 2,i)|

Fig. 4. The framework for simplification and solution of the formulation for PADs.



XUE et al.: CORRECTION OF TIME-VARYING PMU PHASE ANGLE DEVIATION WITH UNKNOWN TRANSMISSION LINE PARAMETERS 319

B. Linear Estimation for PADs with Multiple PMU Snapshots

1) Approximated Relationship Between PADs and Reactance
For high-voltage TL, R ≪ X , that is, b ≫ g, and b ≈

−1/X , g ≈ 0. In most cases, θV is generally small (e.g., less
than 7◦) so that sin θV ≈ θV and cos θV ≈ 1. Thus, (1) can
be simplified as

Pm,i ≈ −Vm,iVn,ib sin θV,i ≈ Vm,iVn,iθV,i/X (19)

Thus, the PADs (θV,i) can be estimated using

θV,i ≈
Pm,iX

Vm,iVn,i
(20)

Equation (20) is the approximated relationship between
PADs and reactance
2) Formulation of Linear Estimation for PADs

Combining (20) and (18), the linear formulation for PADs
at multiple snapshots can be established as

min
∑n

i=1

∣∣fi(M ′
1,i,M

′
2,i, θV 1,i, θV 2,i)

∣∣
θV 1,i ≈ P ′

m1,iX/V ′
m1,iV

′
n1,i

θV 2,i ≈ P ′
m2,iX/V ′

m2,iV
′
n2,i

(21)

⇒ min

n∑
i=1

∣∣∣∣∣fi
(
M ′

1,i,M
′
2,i,

P ′
m1,iX

V ′
m1,iV

′
n1,i

,
P ′
m2,iX

V ′
m2,iV

′
n2,i

)∣∣∣∣∣
= min

n∑
i=1

∣∣fL
i (M

′
1,i,M

′
2,i, X)

∣∣ = minFL(X)

= min

n∑
i=1

|εLi | (22)

where fL
i (M

′
1,i,M

′
2,i, X) represents a new function obtained

by replacing θV 1,i, θV 2,i in fi(M
′
1,i,M

′
2,i, θV 1,i, θV 2,i) using

(20), and εLi is the residual including εLY,i and εLZ,i.
Equation (22) can be solved by dichotomy, and the optimal

solution of (22) is donated as XL
op. Once XL

op is obtained, then,
the PADs at different snapshots which are denoted as θ0V 1,1,
θ0V 2,1, · · · , θ0V 1,n, θ

0
V 2,n, can be calculated linearly with (20).

The overall solution process is as follows.

minFL(X)
dichotomy−−−−−→ XL

op

θ0
V,i≈

P ′
m,i

V ′
m,i

V ′
n,i

XL
op

−−−−−−−−−−−−→ θ0V 1,i, θ
0
V 2,i

i = 1, 2, . . . , n

Fig. 5. Flow chart of the linear estimation of PADs.

Besides, about the boundary of dichotomy, according
to [36], the maximal deviation of offline reactance value
is ±10%. Thus, to cover the true value of reactance ef-
fectively, the search boundary of dichotomy is set to be
[0.6Xoffline, 1.4Xoffline], and the convergence criterion is |Xk−
Xk+1| < 0.001Xoffline.

Based on linear simplification, (18) is converted into (22).
Note, in (18), 2n variables are solved based on PMU data at
2n snapshots, but, in (22), one variable is solved based on
PMU data at 2n snapshots. Therefore, redundancy is higher,
yielding better robustness to measurement noise.

C. Rough Identification of ParTL

Once the estimation results of PADs using linear approx-
imations are obtained, the phase angles at both ends of the
TL can be roughly corrected based on (4). The corresponding
corrected phasors are denoted as V ′

mRC,i, V ′
nRC,i, I ′

mRC,i,
I ′
nRC,i at snapshot i. Furthermore, using the corrected data

at snapshot i, the ParTL can be identified as

Xi = imag

(
V ′2
mRC,i − V ′2

nRC,i

I ′
mRC,iV

′
nRC,i − I ′

nRC,iV
′
mRC,i

)
(23)

R′
i = real

(
V ′2
mRC,i − V ′2

nRC,i

I ′
mRC,iV

′
nRC,i − I ′

nRC,iV
′
mRC,i

)
(24)

where Xi, R′
i represent rough identification results of ParTL

at snapshot i.
Furthermore, considering that resistance is hard to identify,

as the sensitivity of resistance to voltage amplitude may be
very high [35], small deviations in filed voltage amplitude will
result in large deviations in resistance. For example, to a TL
with X/R = 14, and ∆θV = 0.8◦ (0.014 rad), the sensitivity
is −1000 [35], which means that 0.1% error in voltage will
result in 100% error in resistance.

To address this problem, considering the ratio between
reactance and resistance changes little, resistance can also be
identified based on identification results of reactance, i.e.,

R′′
i =

Xi

KX/R
(25)

where KX/R = Xoffline/Roffline, Xoffline and Roffline are the
offline values of reactance and resistance, and R′′ is the
identified resistance based on the ratio between reactance and
resistance.

On the other hand, when the accuracy of voltage amplitude
is high, the identified results based on (24) are more accurate;
when the accuracy of voltage amplitude is low, the identified
results based on (25) is more accurate. Since R′

i is more
sensitive to the accuracy of voltage, deviation between R′

i and
Roffline can be used as a criterion for selection, i.e.,

Ri

{
R′

i R′
i −Roffline < αRoffline

R′′
i R′

i −Roffline > αRoffline
(26)

Generally, the change of resistance does not exceed
30% [37], thus, α is set to be 30% in this paper.

Furthermore, based on identified results at multiple snap-
shots, i.e., R = [R1, R2, · · · , R2n], X = [X1, X2, · · · , X2n],
rough estimation for the ParTL can be obtained with the
median estimation [38].

R0 = Median(R) X0 = Median(X) (27)

The rough estimation results of ParTL are denoted as Z0 =
R0 + jX0 = 1/(g0 + jb0), which will be used as initial values
for accurate estimation of PADs.
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D. Accurate Estimation of PADs

1) Approximated Relationship Between PADs and Series Con-
ductance and Admittance

Since resistance is ignored and sin θV ≈ θV and cos θV ≈ 1
in (20), the linear approximation of PADs in Section IV-B
contains errors. To improve accuracy, estimated results of
PADs (θ0V,i) are taken as the Taylor expansion point, the
second-order Taylor series expansion of cos θV,i and sin θV,i
in (1) can be obtained as follows:

sin θV,i ≈ As,iθ
2
V,i +Bs,iθV,i + Cs,i (28)

cos θV,i ≈ Ac,iθ
2
V,i +Bc,iθV,i + Cc,i (29)

where

As,i = − sin
(
θ0V,i
)
/2, Bs,i = cos θ0V,i + θ0V,i sin θ

0
V,i,

Cs,i = sin θ0V,i − θ0V,i cos θ
0
V,i −

(
θ0V,i
)2

sin
(
θ0V,i
)
/2

Ac,i = − cos
(
θ0V,i
)
/2, Bc,i = − sin θ0V,i + θ0V,i cos θ

0
V,i,

Cc,i = cos θ0V,i + θ0V,i sin θ
0
V,i −

1

2

(
θ0V,i
)2

cos θ0V,i

With (28)–(29) and the field PMU voltage and current
phasor data at snapshot i, (1) can be rewritten as

P ′
m,i ≈ (V ′2

m,i − V ′
m,iV

′
n,i(Ac,iθ

2
V,i +Bc,iθV,i + Cc,i))g

− V ′
mV ′

n(As,iθ
2
V,i +Bs,iθV,i + Cs,i)b (30)

Equation (30) is a quadratic equation for θV,i and the
following estimation can be obtained:

θV,i =
−Bi(g, b) +

√
B2

i (g, b)− 4Ai(g, b)Ci(g, b)

2Ai(g, b)
(31)

where Ai = −V ′
m,iV

′
n,iAc,ig − V ′

m,iV
′
n,iAs,ib, Bi = −V ′

m,i

V ′
n,iBc,ig− V ′

m,iV
′
n,iBs,ib, Ci = V ′2

m,ig− V ′
m,iV

′
n,iCcg− V ′

m,i

V ′
n,iCs,ib− P ′

m,i.
Equation (31) is the approximated relationship between

PADs and series conductance and admittance, where θ0V,i,
P ′
m,i, V ′

m,i, V ′
n,i are known variables; θV,i and g, b are un-

known variables, Thus, once the g, b is obtained, the PADs
can be obtained.

During system operations, typically θV,i < 7◦ (0.12 rad)
and g ≈ 0, b ≈ −1/X , Vm,iVn,i > 104, thus, −Bi is far
larger than π; By contrast, as Ac,i ≈ −0.5, g ≈ 0, As,i ≈ 0,
Ai is small. Therefore, the other root, i.e., θV,i = (−Bi −√
B2

i − 4AiCi)/2Ai ≫ π, which should be discarded.
2) Formulation for Accurate Estimation of PADs

Combining (31) and (18), an accurate formulation for PADs
at multiple snapshots can be established as

min
∑n

i=1

∣∣fi (M ′
1,i,M

′
2,i, θV 1,i, θV 2,i

)∣∣
θV 1,i =

−B1,i+
√

B2
1,i−4A1,iC1,i

2A1,i

θV 2,i =
−B2,i+

√
B2

2,i−4A2,iC2,i

2A2,i

(32)

⇒ min
n∑

i=1

∣∣∣∣∣∣fi
M ′

1,i,M
′
2,i,

−B1,i +
√
B2

1,i − 4A1,iC1,i

2A1,i
,

−B2,i +
√
B2

2,i − 4A2,iC2,i

2A2,i

∣∣∣∣∣∣

= min
n∑

i=1

∣∣fA
i

(
M ′

1,i,M
′
2,i, g, b

)∣∣ = minFA(g, b) (33)

where A1,i and A2,i are the functions of g, b, which are
obtained by bringing the PMU data under power flow 1 and
power flow 2 into Ai(g, b) respectively. This also applied to
B1,i B2,i C1,i C2,i.

Furthermore, (33) can be solved using the interior point
method (IPM). Optimal solutions to minFA(g, b) are denoted
as gAop and bAop. Once gAop and bAop are obtained, using (31), the
PADs at different snapshots can be estimated accurately. The
flow chart is shown in Fig. 6.

minFA(g, b)
IPM−−−→ gAop and bAop

θV,i≈
−Bi+

√
B2

i
−4AiCi

2Ai−−−−−−−−−−−−−−−→ θV 1,i and θV 2,i

i = 1, 2, . . . , n

Fig. 6. The flow chart for accurate estimation of PADs.

Considering the interior point method is dependent on good
initial conditions, the rough identification results of ParTL in
Section IV-C (i.e., g0 and b0) are used for the initial value.
Since the rough identification based on dichotomy has good
astringency and the results are close to true value, it can
provide good initial values to ensure accuracy of the proposed
methods. Besides, after a large number of simulations, the
search boundary is set as [0.6g0, 1.4g0], [1.3b0, 0.7b0].

Based on (33), the estimation of PADs at multiple snapshots
is converted to the optimal problem for g, b, i.e., estimate
g, b to minimize FA(g, b). This helps reduce the number of
variables and improves measurement redundancy.
3) Robust Estimation of PADs

To resist the influence of possible bad PMU amplitude data
issues (including bad data of voltage and current amplitude,
active and reactive power), development of robust estimation
of PADs is advocated. In particular, the objective functions
(22) and (33) are changed to the following weighted objective
function,

minFLW(X) = min
n∑

i=1

wi

∣∣fL
i

(
M ′

1,i,M
′
2,i, X

)∣∣ (34)

minFAW(g, b) = min
n∑

i=1

wi

∣∣fA
i

(
M ′

1,i,M
′
2,i, g, b

)∣∣ (35)

where FLW and FAW respectively represent weighted linear
and accurate objective functions of PADs based on (22)
and (33). With different weights at different snapshots, the
influence of abnormal data can be reduced. For example, when
abnormal data occur, the corresponding weight in the objective
function can be set to 0, and the measurement is rejected.

This paper applies the IGG (Institute of Geodesy & Geo-
physics) method shown in [39], [40] to determine measure-
ment weights. The IGG method divides measurement data into
three categories: 1) normal measurement; 2) available mea-
surement; 3) harmful measurement. Correspondingly, weight
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is divided into three categories: 1) security zone; 2) weight
down zone; 3) elimination zone. The weight function of IGG is

wi(ε
L
i ) =


1 |εLi − µ| ≤ sσ0

sσ0

|εLi −µ| sσ0 < |εLi − µ| ≤ rσ0

0 |εLi − µ| > rσ0

(36)

where εLi is the residual error of ith term in (22), including
εLY,i and εLZ,i, which are obtained with the left boundary of X
into (22); µ is the mean of residual error; σ0 is the standard
deviation of residual error; s and r are the coefficients to assure
robustness; s can be 1.0 ∼ 1.5, while r can be 2.5 ∼ 3.0. s =
1.5 and r = 3.0 are used in this paper.

If boundary conditions in (36) are obtained based on the
mean and standard deviation of residuals directly, they will be
affected by abnormal data and measurement error of different
equipment. Thus, this paper applies the median estimator to
calculate the distribution of residuals adaptively [40], i.e.,

µ̂ ∼= median(εL) (37)

σ̂0
∼=

median|εL − µ̂|
0.6745

(38)

where median(εL) represents the median of the residual
sequence εL = [εL1 , ε

L
2 , · · · , εLn]. When the number of samples

is large enough, mean and standard deviation can be estimated
effectively by (37) and (38) without being affected by abnor-
mal data. The median estimator has strong robustness.

The IGG robust method can also distinguish normal and
abnormal data. Specifically, the weight of abnormal data is
0, while the weight of normal data is not 0. In the solution
process, the objective function must keep unchanged, i.e.,
weight is the same in each iteration in linear approximation
and accurate estimation. In this paper, the weights are deter-
mined based on the residual that is obtained by taking the left
boundary of X into (22).

E. Flowchart for PAD Correction

The robust correction of PADs can be divided into 4 parts,
i.e., weights determination based on IGG, linear estimation for
PADs, rough identification for ParTL, and accurate estimation
for PADs, and the overall process is shown in Fig. 7.

V. NUMERICAL RESULTS

In this section, the effectiveness of the proposed methods
is verified with different noises and power flows. Besides, the
robustness of the proposed methods is tested. Specifically, a
500 kV TL is modeled in PSCAD with parameters: length =
200 km, R = 2.666 Ω, X = 40.448 Ω, Y = 7.6202 × 10−4 S,
and the upload period is 40 ms. Multiple sets of steady-state
measurements are obtained by changing the load. Each set
contains 1000 snapshot (40 s) measurements. Each simulation
is conducted based on two sets of simulated measurements
under different power flow conditions, and the loads and PADs
of two power flows are denoted as Pn1 and Pn2, θV,Pn1 and
θV,Pn2. Besides, without repeating the description, the search
boundary of dichotomy is set to be [0.6Xoffline, 1.4Xoffline], and
the left boundary is used to determine weight by default. In

Obtain the PMU data under at least two
different power flow conditions 

Determine search boundary and
convergence criterion 

Solve optimization problem min FLW(X)
based on dichotomy

Estimate PADs linearly

Identify the ParTL roughly
based on (23)–(27)

Establish the objective function min FAW(X)
based on Taylor formula

Linear 
estimation
for PADs 

Accurate
estimation
for PADs  

Correct phase angle data roughly based on (4)

Start

End

Provide the initial
value for interior

point method 

Estimate PADs accurately 

Rough 
identification

for ParTL 

Solve the objective function min FAW(X)
based on interior point method       

Provide expansion point
of Taylor series 

Obtain residual by bringing left

boundary of X into (22) and estimate
weights using (36)–(38) 

Estimation 
for weights

based on IGG 

Correct  phase angle accurately

Fig. 7. Flowchart for PAD correction.

each case, 1000 Monte Carlo simulations are carried out and
the average value is taken as the final result. All the simulated
cases are performed on an Intel i5-10400 CPU, 16G RAM
desktop.

A. Sensitivity to Noise

This case verifies the effectiveness of the proposed methods
under different noises. Specifically, simulated data without
noise under two power flow conditions are obtained by setting
loads as 160+j16MVA and 180+j18MVA. Corresponding
estimated results and their average relative error of linear
approximation and accurate estimation based on FY-IGG and
FZ-IGG are shown in Table I.

As shown in Table I, when data do not contain noise, linear
estimation results of the two models have a slightly larger
error, but they are still near the set value. This shows that linear
estimation can provide an effective Taylor expansion point for
accurate estimation. Besides, errors of accurate estimation of
two models are small, indicating the second-order Taylor series
improves the accuracy of the methods. Besides, both methods
have high computational efficiency. Specifically, FY-IGG only
needs 0.29 s to calculate the PADs of 1000 sets of PMU data
(40 s), which is faster than FZ-IGG (1.06 s). Running times of
both methods (0.29 s and 1.06 s) are less than data acquisition
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TABLE I
RELATIVE ERROR OF ESTIMATED PADS IN LINEAR ESTIMATION AND

ACCURATE ESTIMATION WITHOUT NOISE

Model Running
time (s)

θV,Pn1 (◦) θV,Pn2 (◦)
Set value 4.3237 4.8469

**FY-
IGG

Linear
estimation 0.24 Estimated value 4.2852 4.8127

*Rel. error (%) −0.8902 −0.7066
Accurate
estimation 0.29 Estimated value 4.3238 4.8470

*Rel. error (%) 0.0025 0.0020

**FZ-
IGG

Linear
estimation 0.95 Estimated value 4.3068 4.8370

*Rel. error (%) −0.3900 −0.2049
Accurate
estimation 1.06 Estimated value 4.3238 4.8470

*Rel. error (%) 0.0023 0.0019

*Rel. error presents relative error.
**FY-IGG and FZ-IGG presents the estimated model with IGG.

time (40 s). Thus, they can be used for online applications.
Furthermore, under the same power flows, the performance

of the methods under different noises is tested, including
70 dB, 65 dB and 60 dB. Estimation results are shown
in Table II. It can be found that under the same level of
noise, the accuracy of the two methods is close. With noise
level increasing, the errors of the estimation results increase
gradually, but the maximum error is only 1.0060%, which is
still near the set value, indicating the methods are effective
under different levels of noise.

B. Sensitivity to Operating Conditions

This case verifies the effectiveness of the proposed methods
under different power flow operating conditions. Specifically,
simulated data with 70 dB noise is obtained under differ-

TABLE II
RELATIVE ERROR OF ESTIMATED PADS WITH NOISE OF

DIFFERENT LEVEL

Noise level Model θV,Pn1 (◦) θV,Pn2 (◦)
set value 4.3237 4.8469

70 dB
FY-IGG Estimated value 4.3028 4.8285

Rel. error (%) −0.4823 −0.3792

FZ-IGG Estimated value 4.3386 4.8637
Rel. error (%) 0.3447 0.3455

65 dB
FY-IGG Estimated value 4.3004 4.8257

Rel. error (%) −0.5374 −0.4388

FZ-IGG Estimated value 4.2986 4.8191
Rel. error (%) −0.5809 −0.5733

60 dB
FY-IGG Estimated value 4.2880 4.8121

Rel. error (%) −0.8240 −0.7176

FZ-IGG Estimated value 4.3666 4.8957
Rel. error (%) 0.9918 1.0060

ent power flow conditions, including constant load ratios
(Pn1/Pn2 = 1.25) and different load ratios (Pn1/Pn2 from
2 to 12), and the corresponding estimated results are shown
in Table III. It can be observed the relative errors of estimated
PADs are all small. Among them, the maximum error is only
0.85%, indicating that the proposed methods can estimate the
PADs accurately under different operating conditions.

C. Robustness to Abnormal Data

In this subsection, the robustness of the proposed methods
under abnormal data is tested. Specifically, the simulated data
for 40 s are obtained with the load of 160+j16MVA and
180+j18MVA, and 70 dB noise is added. Besides, data during
0–12 s at bus m are set to be 0 to simulate abnormal data
(they can also be regarded as data loss). Estimated results and
relative error during 12–40 s are shown in Table IV. When
there are abnormal data, the PAD correction results of FY and
FZ have large errors, while the correction results of FY-IGG
and FZ-IGG still have high accuracy, which means the IGG
method can accurately identify abnormal data and set their
weights to 0 to exclude the interference of abnormal data.

D. Comparison with Other Methods

1) Correction of constant PAD deviations
To further illustrate the advantage of the proposed methods,

comparisons with [28] are performed. Specifically, with the
same TL in Section V-A, the loads are set to be 160 MW,
161 MW, 162 MW, 163 MW, 164 MW, 165 MW. 100
groups of data are obtained for each power flow. Constant
deviations are added to the phase angle data at bus m to
simulate PAD deviations in practice. Estimation results for
the two methods are shown in Table V. When PAD deviation
is small, the estimated results of [28] are accurate. But with
increase of PAD deviation, the estimation results of [28] are
deviating from set value. The reason is, in [28], field data
with deviations are taken as expansion points to calculate the
ordinary differential equation. Thus, when deviation is large,
results will be inaccurate. By contrast, the proposed methods
can obtain accurate results under different PAD deviations,
which show the superiority of the proposed methods.
2) Correction of Time-varying PAD Deviations

In this section, by correcting the time-varying PAD de-
viation, performance of the proposed methods is compared
with [29] and [14]. Specifically, this case applies the same data

TABLE III
THE RELATIVE ERROR OF ESTIMATED PADS OF THE PROPOSED METHODS UNDER DIFFERENT POWER FLOW CONDITIONS

Constant load ratio (Pn1/Pn2 is constant)

Power flow conditions
Pn1 (MW) 50 100 200 320 640 1280
Pn2 (MW) 40 80 160 400 800 1600
Pn1/Pn2 1.25 1.25 1.25 1.25 1.25 1.25

Rel. error of PADs (%) FY-IGG −0.85 −0.59 −0.44 −0.15 −0.04 0.03
FZ-IGG 0.18 −0.75 0.27 −0.19 −0.10 0.01
Different load ratios (Pn1/Pn2 = 2 ∼ 12)

Power flow conditions
Pn1 (MW) 80 160 240 320 400 480
Pn2 (MW) 40 40 40 40 40 40
Pn1/Pn2 2 4 6 8 10 12

Rel. error of PADs (%) FY-IGG −0.56 0.28 0.13 0.24 −0.10 −0.43
FZ-IGG 0.49 0.15 −0.19 0.03 −0.12 −0.39
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TABLE IV
THE ESTIMATED RESULTS OF PADS WITH PARTIAL DATA LOSS

Model θV,Pn1 (◦) θV,Pn2 (◦)
Set value 4.3237 4.8469

FY-IGG Estimated value 4.3017 4.8275
Rel. error (%) −0.5077 −0.4017

FY
Estimated value 13.6586 5.7080
Rel. error (%) 181.8000 114.1052

FZ-IGG Estimated value 4.2900 4.8093
Rel. error (%) −0.7782 −0.7764

FZ
Estimated value 2.4097 1.5562
Rel. error (%) −50.2848 −41.6267

TABLE V
THE ESTIMATED RESULTS OF [28] AND PROPOSED METHODS UNDER

DIFFERENT PAD DEVIATIONS

Set values of
PAD deviation

Estimated results for PAD deviation
FZ-IGG FY-IGG [28]

2 2.04 2.03 2.01
10 10.03 10.02 9.99
20 20.04 20.03 20.39
40 40.03 40.05 61.15

in Section V-A, and ramp time-varying phase angle deviation
with a maximum value of 0.2◦ is added to the voltage and
current phase angle data at bus m, as the black line shown
in Fig. 8. Corrected results based on [14], [29], and the
proposed methods are shown in Fig. 8, also. It can be found
the corrected results of [14], [29] deviate from the set value.
The reason is the methods in [29] and [14] assume the PAD
deviation is constant during measurement period or a small
period, which is not suitable for correction of time-varying
deviation. By contrast, the corrected results of the proposed
methods are close to the set value. This case demonstrates
the effectiveness of the proposed methods in correcting time-
varying PAD deviation.

VI. RESULTS WITH FIELD PMU DATA

This section applies the proposed methods to the actual data
obtained from a 90.3 km long, 500 kV TL (mentioned in
Section II). Specifically, PMU measurements (with a sampling
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Set value of PAD

PAD with ramp deviation
Corrected by FZ-IGG
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Fig. 8. The estimated results of [14], [29] and the proposed methods under
time-varying PAD deviation.

period of 40 ms) under two different power flow conditions
are used. Each condition contains 1,000 sets of PMU measure-
ments. The correction results and field data under one working
condition are shown in the Fig. 9.
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Reference value: PAD from power flow calculation
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Accurately Corrected by FZ-IGG 

Fig. 9. Field PAD data, reference value of PAD, and corrected PAD data by
the proposed methods with time-varying PAD deviations.

In Fig. 9, the orange dashed line is the field PMU data
with time varying deviation; the red and black dashed line is
the corrected results based on FY-IGG and FZ-IGG, respec-
tively; note, since the actual value of the PADs in practice
is unknown, the PADs from power flow calculations based on
offline ParTL are taken as the reference value instead of actual
value, see the blue solid line.

It can be found the PADs estimated by the two methods
are close, indicating they yield consistent results. Besides,
compared with the field PADs before correction, the correction
results by the proposed methods are far closer to the reference
value, which shows the practicability of the proposed methods
in correcting the time-varying PMU phase angle deviation.

Furthermore, with (23)–(24) and the corrected and uncor-
rected phase angle data under power flow 1, the ParTL can
be identified at each snapshot. Taking the reactance as an ex-
ample, the maximum, minimum, and median of identification
results are shown in Table VI. It is observed the difference
between the maximum and minimum values of the identified
reactance based on the uncorrected data during 40 s are large,
and the maximum value deviates from the offline value a lot.
Identified reactance based on the corrected data fluctuates little
and is close to the offline value.

TABLE VI
IDENTIFICATION RESULTS OF REACTANCE WITH CORRECTED AND

UNCORRECTED PHASE ANGLE DATA

Statistical value Uncorrected FY-IGG FZ-IGG Offline value
Maximum (Ω) 30.1013 24.0636 24.3419

23.8416Minimum (Ω) 22.6812 23.8845 24.1620
Median (Ω) 27.0678 23.9663 24.2441

VII. CONCLUSION

This paper proposes two robust correction methods for time-
varying PAD deviation without knowing ParTL. The methods
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are applicable to the case that the PMU are installed at
both ends of the line, which is independent of the topology
of power system. Correction is realized by converting the
problem of estimating PADs to the estimation of the ParTL
via linear approximation and accurate expression. Besides,
by applying the “three-segment” IGG weight function to the
PAD estimation, the proposed methods have the robustness to
bypass abnormal data. If the phase angle errors caused by CT
and PT are the same, the methods will combine the two types
of errors automatically. Results with simulated and field data
under different power flow conditions verify the effectiveness
and robustness of the proposed methods.
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