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Abstract—A large amount of synchrophasor data in the 
Wide Area Measurement System (WAMS) needs to be collected 
and transmitted to the phasor data concentrator, thereby 
increasing the possibility of being attacked by hackers. The 
attacked data is therefore hidden into the normal data. To 
remedy this problem, an identification framework is proposed 
to detect the cyber-attack in WAMS utilizing Variational Mode 
Decomposition (VMD) and Multi-fusion Support Vector 
Machine (MSVM). First, VMD is used to transforms the 
modified data into multiple modal components and then MSVM 
is employed to classify the deterministic features using the linear 
combined multi-kernel. This linear combined multi-kernel fuses 
multiple types of features including time, frequency and 
statistical variables of the synchrophasor data. Utilizing the 
actual data from FNET/GridEye, different experiments are 
conducted under multiple attack strengths and types. The 
results show that the identification framework has a higher 
accuracy and robustness compared with other conventional 
classifiers. 

Keywords—Linear combined multi-kernel, Multi-fusion 
Support Vector Machine, Synchrophasor data, Variational 
Mode Decomposition 

I. INTRODUCTION 

The quality of the synchrophasor data collected in the 
Wide Area Measurement System (WAMS) is critical for grid 
situational awareness and disturbance event location. 
However, the synchrophasor data is vulnerable to the cyber-
attack, such as False Data Injection Attack (FDIA) and Denial 
of Service. Moreover, the FDIA methods can be achieved 
secretly due to security holes of IEEE C37.118 [1]. Apart 
from this, a variety of FDIA methods make it difficult to 
detect the attack behavior. To enhance the synchrophasor data 
quality and availability, it is necessary to detect the FDIA from 
the normal data in the WAMS. 

Generally, the cyber-attack identification can be 
categorized into model-driven and data-driven methods [2]. 
The model-based detection methods are proposed based on the 
power system parameters and configuration. The Weighted 
Least Squares (WLS) is one of the most commonly used 
model-based methods, which can be used to estimate the 
system states and topology change caused by FDIA [3]. 
However, the WLS assumes that the system is operating 
under steady-state conditions. 

To reduce dependence on the model and system 
parameters, different data-driven methods are proposed to 
learn and distinguish the FDIA. For example, Artificial 

Neural Networks (ANN) is used to identify the event of the 
cyber-attack in the compromised meters [4]. The electrical 
theft, by tampering with billing alterations, can be detected 
using the Decision Tree (DT) and Support Vector Machine 
(SVM) [5]. However, the ANN and DT can generate over-
complex nodes and trees, resulting in decreased performance 
in testing data. To overcome this problem, some advanced 
methods such as deep belief networks [6] and convolutional 
neural network [7] are used to automatically extract the 
features of attack signals. Due to the diversity of FDIA 
methods, the performance of these networks is limited by the 
single input information. 

Combined with the advantages of strong feature extraction 
capabilities of data-driven methods, a novel framework based 
on Variational Mode Decomposition (VMD) and Multi-fusion 
SVM (MSVM) is proposed to identify multiple cyber-attacks 
in synchrophasor data. Particularly, the MSVM can fuse 
various attack features through the linear combined multi-
kernel, thus avoiding the problem of insufficient information 
in a single input. 

The remainder of this paper is organized as follows: in 
Section II, the VMD and definition of extracted features are 
presented. Then, the proposed MSVM method is described to 
detect the cyber-attack in Section III. Different experiments 
are conducted in Section IV. Finally, the experimental results 
are discussed in Section V. 

II. FEATURE EXTRACTION BASED ON VMD 

A. Principle of VMD 

VMD is a new multiresolution technology for adaptive 
and non-recursive signal decomposition, which is suitable for 
analyzing non-linear and non-stationary signals [8]. 

For the attacked synchrophasor data f(t), the VMD can 
automatically decompose signal f(t) into multiple Intrinsic 
Mode Functions (IMFs) with sparse characteristics and 
limited bandwidth. The sum of different IMFs can restore f(t). 
Specifically, the VMD optimizes the following constraints to 
generate IMFs, which can be expressed as 
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where N is the number of IMFs, (t) is the Dirac delta 
function, un(t) = {u1(t), u2(t),…,uN(t)} are shorthand notations 
for the set of all IMFs, n ={1, 2, …, N} are shorthand 
notations for the center frequency of un(t). 
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To calculate un(t), the amplitude-modulation-frequency-
modulation signals can be used as 

 ( ) ( )cos( ( ))n n nu t A t t  (2) 

where An(t) 0 is the envelope of un(t), n(t) is the phase of 
un(t). 

To obtain the optimal solution of constrained variational 
problems in Equation (1), the Lagrange multiplier method and 
penalty term are introduced. The following expression is 
obtained as 
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where the  is penalty term,  is Lagrange multiplier. 

Combined with Alternate Direction Method of Multipliers 
(ADMM), the Parseval/Plancherel Fourier isometry under the 
L2-norm is used to convert the un and  to frequency domain 
[8]. The iterative formulas of ûn() and n, are expressed as 
follows 
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and 
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where the ûn() is Fourier transform of un(t), ω is the center 
frequency of ûn(), f�(ω) is Fourier transform of f(t), λ�(ω) is 
Fourier transform of (t). To simplify the calculation, the 
gradient descent method is used to solve λ�(ω), which can be 
expressed as 

         m+1 m 1ˆˆ ˆ ˆm
nN

f u          (6) 

where  is the quadratic penalty term, which can improve the 
convergence rate of λ�(ω). Thereafter, the un(t) is obtained by 
the inverse Fourier transform of ûn(). 

Here, the number of decompositions N should not be too 
small to avoid incomplete decomposition or too large to avoid 
false components. In this paper, the N is optimally set to 6, 
which means 6 IMFi components are decomposed, where i=1, 
2, …, 6. 

To demonstrate the effect of VMD, an example of two 
different cyber-attack signals are presented in Fig. 1. It can be 
seen that the start and end time components of the scale attack 
are detected in IMF5 of Fig. (c). Meanwhile, the changing 
trend of frequency shock attacks is reflected in the residual 
component (IMF6). 

B. Feature Extraction 

After obtaining the IMFs of different attacked 
synchrophasor data, distinctive attack features are extracted 
for identification. Specifically, four types of features are used 

including two statistical features, and another two from the 
frequency and time domain respectively. 

 

Fig. 1. Example of the signal decomposed by VMD. (a) The scale attack, 
(b) The frequency shock attack, (c) The VMD result of (a), (d) The VMD 
result of (b). 

These two statistical features are the kurtosis index and 
envelope entropy to reflect the characteristics of each IMF. 
The kurtosis index is sensitive to transient signals, thus it can 
reflect the degree of non-stationarity of each IMF. For IMFi of 
length n, its kurtosis can be expressed as 
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where mj is the jth value of IMFi, and m� is the average value 
of IMFi. 

If Kui is positive, it means that IMFi has obvious peak 
characteristics, which is called super-Gaussian distribution. If 
Kui is negative, it means that IMFi has no obvious impact or 
pulse signal, which is called sub-Gaussian distribution. 

The second feature is envelope entropy, in which the 
distribution of source-information can be analyzed. The 
information entropy of each IMF envelope is a measure of the 
overall distribution of the signal. For each IMFi, the envelope 
entropy can be calculated as 
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where Ei(t) is the envelope signal of IMFi obtained by Hilbert 
transform, Eei is the envelope entropy of IMFi. Generally, the 
more uniform the distribution of variables in the IMFs, the 
smaller information entropy value of Eei. 

The statistical characteristics of attack signals can be 
extracted by using the Kui and Eei. The time and intensity and 
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unique fingerprints are expected to extract to increase the 
diversity of features. According to the [6], the frequency 
domain features after removing the main trend term can be 
used as fingerprints for synchrophasor data. Combined with 
the result of VMD, the IMF6 is the residual component that 
represents the trend of the attacked signal. Therefore, the 
frequency spectrum fingerprint can be obtained by using the 
Fast Fourier Transform (FFT), which can be calculated as 
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where the Nn is the length of signal f()-IMF6(),∈t. 

Combined with the original time domain signal f(t), all the 
features can be expressed as follows: {Sm} ={f(t), f1(), Eei, 
Kui }, where m = 1, 2, 3, 4 denotes the order of 4 features. 

Fig. 2 is a visual example of the features from scale attacks. 
In Fig. 2(b), the f1() is the spectrum of the attack signal after 
removing IMF6, which highlights the features of the attack 
signal. Theoretically, the functions of kurtosis and envelope 
entropy are complementary. In Fig. 2 (c) and (d), it also can 
be found that their changing trends are complementary. 

 

Fig. 2. Visual example of all features, (a) Scale attack signal, (b) FFT of the 
original signal removing IMF6, (c) Kurtosis of IMFs, (d) Envelope entropy 
of IMFs. 

III. CYBER-ATTACK IDENTIFICATION USING MULTI-FUSION 

SVM  

A. Principle of SVM and Multi-Fusion SVM 

To achieve accurate classifications of different attack 
signals, an efficient classifier is required. Support Vector 
Machine (SVM) has a strong learning ability and 
generalization ability, so it is suitable for solving high 
dimensional and non-linear classification problems [9]. 

In SVM, given a set of feature samples D = {Sm, yi}, where 
i = 1, 2, …, n, yi is the label of Sm. If Sm is linearly separable, 
the objective of SVM is to find a hyperplane. The definition 
of optimal classification hyperplane can be obtained as 

  0  ,T m nw S b w R b R      (10) 

However, if Sm is linearly inseparable, a kernel function is 
needed to map the sample to a high-dimensional feature space. 
Here, this high-dimensional space is linearly separable. The 
most commonly used kernel function is Radial Basis 
Function (RBF), which can be defined as 
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where the  represents the kernel parameter of RBF, the sm 
i  

and sm 
j  are samples from Sm respectively. The principle of 

kernel SVM classifier is shown in Fig. 3. In Fig. 3, we can 
intuitively see the classification process of linearly 
inseparable samples. Kernel function maps the linearly 
inseparable samples in low-dimensional space to high-
dimensional space to make the samples linearly separable. 
Particularly, the boundary vector determines the 
classification performance of SVM. Therefore, it is worth 
mentioning that the performance of kernel function and the 
choice of kernel function will directly affect the locations of 
boundary vectors. 

 
Fig. 3. Principle of kernel SVM classifier. 

 

The local and global characteristics of different kernel 
functions are different. To improve the performance of SVM, 
different kernel functions can be combined according to 
Mercer's theorem [10]. Specifically, the Linear Combined 
Multi-kernel (LCM) method is first proposed to fuse multiple 
features [11], which can be expressed as  
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where KRBF denotes RBF kernel, sm 
i  represents the ith element 

of mth feature in Sm, i represents the kernel parameter, the 
m denotes the weights of KRBF. As can be seen, different 
features are mapped using different kernel functions in the 
proposed LCM-SVM. 

For different features, the proposed LCM method uses 
different kernel functions and parameters. Meanwhile, the 
importance of different features is achieved by weights m. 
This means that each feature can match the most suitable 
kernel functions, thus a distinguishable hyperplane can be 
constructed. 

It is found that the classification effect of different kernel 
functions is often complementary for a certain feature. For 
example, the RBF kernel has better local characteristics while 
the Polynomial Kernel (PK) function has better global 
characteristics. Additionally, the factors that affect the SVM 
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classification is the eigenvectors between hyperplane 
boundaries. 

Based on the above consideration, a new Multi-fusion 
SVM is further proposed. In MSVM, two kernel functions 
with different parameters and weights are used for each 
feature. One of the kernel functions is used for mapping and 
the other is expected to adjust the boundary vector. In this 
way, the combination of kernel functions for each feature is 
optimal. Based on the LCM, the novel combined multi-kernel 
functions are redefined as 
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where Km 
1  and Km 

2  are two different LCM functions using for 
the mth feature, pm,1 and pm,2 are the kernel parameters of Km 

1  
and Km 

2  respectively, m and m are their weights. In Equation 
(13), the Km 

1  is considered as the primary kernel. The second 
kernel Km 

2  is called calibration kernel function, which is used 
to repair the boundary vector. A smaller weight m is assigned 
to Km 

2  to limit its impact on Km 
1 . 

To learn the optimal classification hyperplane, the 
optimization framework of the MSVM is introduced as 
follows 
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where w denotes the weight vector and b denotes the bias 
term of the decision plane respectively, i is the slack variable, 
C  0 is the penalty coefficient. The optimal classification 
hyper-plane can be obtained via partial derivatives from dual 
Lagrange function. 

By solving the dual optimization problem, for the new 
synchrophasor data z, the obtained decision function in the 
high-dimensional feature space is 

   ˆ ,T m
MF iy sign w K s z b   (15) 

B. The parameters selection of MSVM 

SVM is a parameter sensitive method. This means that the 
model parameter selection is critically important for the 
accuracy of MSVM. Based on the structure of MSVM, the 
process of parameter optimization can be divided into two 
steps. 

Step 1: Finding the optimal combination of Km 
1  and Km 

2 . 

To verify the effect of multiple combinations of kernel 
functions, different kernel functions are tested in Km 

1  and K m 
2  

respectively. To simplify the calculations, three commonly 
used kernel functions are used in this test including RBF, PK 
and Sigmoid Kernel (SK) functions. Results under these three 
kernels and the corresponding kernel parameters are listed in 
Table I. Here, we first select kernels for K m 

1 . After a 
satisfactory accuracy is obtained, then the K  m 

2  is further 
debugged based on the selected Km 

1 . It should be notable that 
the weight coefficient can be further optimized. 

Table I shows that the kernel functions have a greater 
impact on the performance of MSVM. Particularly, the 
MSVM obtains 90.95 % when all the kernels are set to RBF 
in Km 

1 . Meanwhile, the accuracy improved by nearly 3%, 
indicating that the SK and PK help improve the performance 
of the MSVM. After some tests, the final selected kernel 
functions are listed in Table II. 

TABLE I.  PERFORMANCE UNDER DIFFERENT KERNEL FUNCTIONS 

Features Optimal kernel combination 
(S1 + S2 + S3 + S4) 

Accuracy 
(%) 

K m 
1  

0.1PK + 0.35SK+ 0.4RBF+0.15SK 58.46 

0.3 SK +0.2PK+ 0.4 PK +0.1SK 84.17 

0.25RBF+ 0.25RBF+ 0.25RBF+0.25SK 86.36 

0.25RBF+ 0.25RBF+ 0.25RBF+ 0.25RBF 90.95 

K m 
2  

0.035RBF+0.015SK+0.025PK+ 0.025RBF 92.06 

0.02SK+0.03PK+0.025RBF+ 0.025RBF 92.79 

0.03RBF+ 0.04RBF+ 0.02RBF+ 0.01RBF 93.56 

0.01SK+0.03PK+0.02SK+0.04PK 93.87 

 

TABLE II.  PERFORMANCE UNDER DIFFERENT KERNEL FUNCTIONS 

Features Optimal kernel combination 
Km 

1  + Km 
2  

S1 RBF+ SK 

S2 RBF + PK 

S3 RBF + SK 

S4 RBF + PK 

 

Step 2: Finding the weight combination of different kernel 
functions and parameters. 

In the proposed method, eight weights are assigned to 
different kernel functions. To avoid getting stuck in the local 
minimum, the Particle Swarm Optimization (PSO) algorithm 
is utilized to find the optimal kernel weights and kernel 
parameters. Specifically, the parameters to be optimized are 
set to the position of the particle. The classification error of 
the VMD-MSVM is recorded as fitness function in PSO. 
Then the parameters can be optimized automatically. 

The overall structure of the framework is shown in Fig.4. 
It shows that the cyber-attack identification of synchrophasor 
data can be divided into three steps. The IMFs of 
synchrophasor data are extracted using VMD. Then two 
features are designed from the IMFs. Combining two features 
from time and frequency domain, all these four features are 
fused and mapped using the proposed MSVM. 

 

Fig. 4. The overall structure of proposed VMD-MSVM. 
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IV. EXPERIMENT 

To verify the actual detection effect of the proposed 
VMD-MSVM, the synchrophasor frequency data in 
FNET/Grideye sever from five locations in Eastern 
Interconnection (EI) are used. Here, six different types of 
cyber-attacks are selected according to [7][12], including 
noise, scaling, data loss, replay, false frequency shock and 
transient oscillation. Using the actual data, 3000 samples are 
generated for each type of attack by simulation. Under 
sampling rate of 10 Hz, each sample is truncated with a 30s 
window length, which corresponds to a length of 300. 

Additionally, the samples are divided into three 
categories including training, verification and testing data set 
during the model validation. Using the PSO method, the 
optimized parameters are selected as follows: um = [0.174, 
0.181, 0.129, 0.275], m = [0.035, 0.072, 0.082, 0.052]. The 
penalty coefficient C is set to 2000. The kernel parameters of 
Km 

1  and Km 
2  are set to: Km 

1  = {RBF(6.1), RBF(0.86), RBF(7.92), 
RBF(0.82)}, and K m 

2  = {SK(1.51,1.51), PK(1,1.06), 
SK(2.34,2.34), PK(1,1.18)} respectively. 

 

Fig. 5. The locations of synchrophasor data. 

A. Performance comparison with different SVMs 

To compare the effects of the proposed MSVM 
framework, the original SVM and LCM-SVM are tested. 
Additionally, different cyber-attack strengths are used to test 
the sensitivity. Considering that the error of frequency 
measurement equipment is generally lower than 5 mHz, thus 
the minimum attack strength is set to 5 mHz. The strengths 
of 10 mHz and 20 mHz are also tested. In this test, 500 
samples are randomly selected as training data. To make a 
fair comparison, all the SVM methods are optimized by using 
PSO. The optimized kernel parameters of LCM-SVM are: m 
= {0.36, 0.31, 0.19, 0.14}; KLM = {RBF(6.58), RBF(0.72), 
RBF(7.85), RBF(1.72)}. The accuracy comparison between 
different frameworks are listed in Table III. 

TABLE III.  CLASSIFICATION ACCURACY BY DIFFERENT FRAMEWORKS 

SVM methods 
Accuracy(%) Test time per 

sample (ms) 5 mHz 10 mHz 20 mHz 

Original DVM 90.71 94.08 93.97 0.038 

LCM-SVM 94.90 95.67 96.22 0.039 

MSVM 95.64 96.96 96.51 0.067 

 

It can be seen from Table III that the original SVM has 
the lowest accuracy at different attack strengths. The LCM-
SVM has 94.90% accuracy, which is nearly 4.2% higher than 
the original SVM under 5 mHz attack strength. Moreover, the 
MSVM has the highest classification accuracy among 

different SVM frameworks, indicating the effectiveness of 
the calibration kernel Km 

2 . The test time of MSVM is higher 
due to multi-kernel computing, the real-time can still be 
satisfied. 

B. Comparison of MSVM, DT and ANN 

To compare the performance of MSVM with some 
common classification algorithms. Three different 
classification frameworks are selected including the DT [4], 
ANN and k-Nearest Neighbors (kNN) [13]. A three-layer 
ANN is used, and the hidden nodes are optimally set to 300. 
The number of neighbors of kNN is optimally selected as 6 
using grid search. To match feature dimensions, the input 
features Sm are stitched together for ANN, DT and kNN. In 
this case, 500 training samples are used. The results are listed 
in Table IV. 

TABLE IV.  COMPARISON OF CLASSIFICATION ACCURACY 

Identification framework Accuracy (%) 
Test time per 

sample (ms) 

DT 80.27 0.049 

ANN 85.93 0.051 

kNN 75.31 0.046 

VMD-MSVM 95.64 0.067 

 

As can be seen from Table IV, the ANN reaches 85.93 %, 
which performs better than DT and kNN. However, this 
accuracy is still 9.71 % lower than the MSVM. The reason is 
that MSVM has the ability to better integrate multiple input 
information. 

The generalization ability of the model, namely the 
learning ability under different training samples, reflects the 
recognition results for unknown attack signals. If the model 
can get higher recognition accuracy with fewer training 
samples, it means that the practicability of the model is better. 
To verify the generalization ability of the proposed method, 
we randomly select 1% to 20% of the sampling data from 
each attack category as the training data. The remaining 
samples are the test data set. The accuracy under different 
ratios samples are recorded as shown in Fig. 6. 

 

 
Fig. 6. Comparison of generalization ability under different number of 
training samples. 

The results show that as the amount of training samples 
increases, the model accuracy gradually increases. When the 
training sample size is less than 5%, the accuracy of the 
model changes quickly. When the number of training samples 
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is higher than 10%, the test accuracy tends to be stable. This 
is because as the sample features increase, the learning space 
of MSVM is also expanded. Compared with different 
methods, the MSVM obtains better accuracy under multiple 
sample spaces. 

V. CONCLUSION 

To detect cyber-attacks on power systems, a multi-scale 
feature fusion based variational mode decomposition and 
multi-fusion SVM are proposed. Utilizing the decomposition 
modal functions, three distinctive features are extracted from 
VMD. The recognition results under different features 
indicate that the modal component IMFs contains unique 
attack components. Thereafter, four different scales features 
are fused and automatically learned based on the proposed 
MSVM. Using the actual synchrophasor data, the results of 
different single and multiple kernel functions show that 
combined kernel function has a better learning ability. 
Moreover, these multiple kernels further optimize 
classification capabilities. Experiments with different attack 
strengths and training samples are conducted to verify the 
proposed VMD-MSVM. Compared with commonly used 
classifiers, the result shows that the VMD-MSVM has strong 
adaptability and robustness. 
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