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B
BUILDINGS ACCOUNT FOR 40% OF TOTAL PRIMARY
energy consumption and 30% of all CO2 emissions world-
wide. A large portion of building energy consumption is due 
to heating, ventilation, and air-conditioning (HVAC) sys-
tems. In the summer, for example, more than 50% of a build-
ing’s electricity consumption is used for cooling. With proper 
energy management, buildings can provide load shifting, 
peak shaving, frequency regulation, and many other demand 
response services.

Many existing approaches for building energy manage-
ment are model based and require the modeling of the complex 

thermal dynamics of the HVAC system and its interaction 
with the ambient environment. The development of such a 
model may introduce measurement and prediction errors, 
which may undermine the control performance. In addition, 
models developed for one building may not generalize well for 
other buildings or unseen operation environments.

In contrast to the model-based approaches, model-free 
algorithms require no prior knowledge of the physical 
model, such as the thermal-dynamic model in the HVAC 
control case; rather, they learn the model through estimation 
and exploration. One representative model-free approach is 
reinforcement learning (RL). As shown in Figure 1, an agent 
(e.g., a demand response controller) interacts with an envi-
ronment (for instance, the building). At each control time 
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Real-World Experience of Machine 
Learning in Demand Control

interval, the agent observes the state of the environment and 
takes an action, making the environment transit from one 
state to another. The environment can send feedback in the 
form of a reward to the agent. The agent improves its action 
based on that reward. 

This process repeats until the environment reaches the 
terminating state. The goal of the agent is to learn an action 
policy that maximizes its cumulative reward from all states. 
In this learning process, the agent does not rely on prior 
knowledge to make decisions, but it gradually formulates an 
optimal action policy through intelligent “trial-and-error.” 
As a result, the model-free approach has greater flex-
ibility in solving control and optimization problems with 
unknown models or partial observabilities.

Deep RL, which is a combination of deep learning and 
RL, is a more recently developed approach. The key idea behind 
deep RL is the adoption of a deep neural network 
(DNN) to let the agent learn an optimal policy. As shown 
in Figure 1, the DNN is a neural network with multiple hid-
den layers. With the given input as the state, the DNN can 

output either the estimated value of the actions or the optimal 
action (depending on the specific deep RL approach) at the 
current state due to the strong feature extraction ability of its 
multiple hidden layers. Deep RL is model free since the DNN 
is trained through interacting with and without prior knowl-
edge of the environment. In addition, the deep RL approach 
also has high generalization abilities for new environments. 
A well-trained DNN can be regarded as a function with fine-
tuned parameters. Whether a state as input is seen before or 
not, a well-trained DNN can always generate an output.

In this article, we introduce an end-to-end workflow for 
developing a deep RL-based residential HVAC controller 
that can control multiple zones, where the zones represent 
different floors in a house. In particular, we describe two 
deep RL approaches for HVAC control, present the evalua-
tion of the deep RL-based HVAC control strategies through 
simulation studies, and discuss the deployment of a deep 
RL-based HVAC control approach in a real-world residen-
tial house. Finally, we analyze the deployment results and 
provide conclusions. 
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By optimally designating the setpoint of the HVAC system, 
the energy cost can be minimized while keeping the indoor 
temperature within the user’s comfort range.

The Deep RL Approach  
for HVAC Control

Schematic Description of Deep RL  
for the HVAC Control Problem
A critical premise for applying deep RL approaches is 
that the problem under investigation is a time-sequential 
decision-making process. At each time step, the current 
state is only related to the previous state, and the opti-
mal decision can be made based only on the current state 
information. This is the case for the optimal control of a 
multizone HVAC system. The indoor temperature at 
the current state is only related to the parameters at 
the previous time interval, and it is not affected by the 
indoor temperature at earlier intervals. By optimally des-
ignating the setpoint of the HVAC system, the energy cost 
can be minimized while keeping the indoor temperature 
within the user’s comfort range. Without losing general-
ity, in the following discussion, we assume that all HVAC 
zones need heating. Also, a zone can simply be regarded 
as a floor in a house in this study.

When applying deep RL approaches, four essential ele-
ments should be first defined: the state (s), action (a), state 
transition probability (p), and reward (r). In the context of 
a multizone residential HVAC control problem, the state 
includes the following factors:

✔✔ the time of day
✔✔ the current indoor temperature
✔✔ the current outdoor temperature
✔✔ a 6-h look-ahead outdoor temperature series for 
planning

✔✔ the current retail price
✔✔ a 6-h look-ahead retail price series
✔✔ the lower bound of the user comfort level
✔✔ the maximum retail price within the next 6 h
✔✔ the length of time to reach the next price peak.

The action is the setting of the HVAC system setpoint. 
It can be either discretely or continuously adjusted within 
a certain range. The reward is defined as the negative 
sum of the energy consumption cost and comfort viola-
tion cost for the control interval, and the comfort viola-
tion cost is calculated based on how many degrees the 
indoor temperature deviates from the user comfort level. 
The environment is the entire building or house includ-
ing the HVAC system.

This process of applying deep RL for HVAC control 
is illustrated in Figure 1. Note that we do not define the 
state transition probability for the process. The prob-
ability refers to the probability of transitioning to a 
specific next state after taking an action at the current 
state. If the state transition probability model is known, 
the HVAC control problem can be explicitly formulated 

and solved analytically. How-
ever, obtaining an accurate state 
transition probability model for 
the HVAC control problem is 
not a trivial task. This is because 
the thermal-dynamic model of 
buildings with HVAC systems 
is related to a variety of param-
eters, including resistances and 
capacitors from different build-
ing components; weather factors, 
such as outdoor temperature and 
solar irradiance; and so on. 

Therefore, as previously men-
tioned, a model-free approach like 
RL is more suitable for solving 
the HVAC control problem. Fur-
ther, the building models can 
vary, and we need a more gener-
alized and robust HVAC control 
approach that can work efficiently 
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figure 1. The RL-based approach for HVAC control. DNN: deep neural network.
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in different building environments. Deep RL, with the pow-
erful embedded DNN providing more generalization and 
adaptability, is an ideal approach for achieving a flexible and 
intelligent HVAC control strategy. More details of the deep 
RL approach will be discussed in the next sections.

Deep-Q Network for HVAC Control
The deep-Q network (DQN) is a combination of Q-learn-
ing and a DNN. The main idea behind the DQN is to build 
a neural network to estimate the optimal control action 
in a discrete domain. The neural network functions like a 
complex lookup table, with the input being a state and the 
output being the action values for all of the possible control 
actions at the current state. In the DQN, this action value is 
called the Q-value, where a higher value indicates a better 
or more effective action. This DQN approach selects the 
action with the highest Q-value 
evaluated by the neural network.

The DQN approach adopts a 
stabilization strategy to train two 
neural networks simultaneously, 
namely, the target and behavior 
networks. The function of the tar-
get network is to provide stable-
labeled samples for the behavior 
network to learn. The DQN con-
verges when the outputs from the 
two networks are close to each 
other. An overview of the DQN 
approach for HVAC control is 
shown in Figure 2(a).

Deep Deterministic Policy 
Gradient for HVAC Control
The deep deterministic policy gra-
dient (DDPG) for HVAC control 
is specially designed for solving 
problems with continuous vari-
ables. In the described DQN con-
trol, the neural network outputs 
all of the possible action values, 
and the number of action values 
generated is limited. As a result, 
the algorithm processes discrete 
actions. In the case of HVAC con-
trol, given the control action as the 
setpoint and an example range for 
the setpoint from 20 to 22 °C, we 
need to discretize the proposed 
range. For instance, if we set the 
step size as 1 °C, then the poten-
tial action set becomes {20 °C,  
21 °C, 22 °C}, and the algorithm 
learns to choose from the three 
actions. In contrast, the DDPG 

algorithm does not require the action space to be discretized. 
Given the setpoint range as [20 °C, 22 °C], the algorithm 
can generate one continuous number within the range. The 
ability to handle a continuous action space makes the DDPG 
algorithm more suitable for solving problems where the con-
trol action is a continuous variable.

The DDPG algorithm can be regarded as an extension of 
the DQN algorithm. In the algorithm, there are two types of 
neural networks applied: the actor and critic networks. The 
actor network outputs a deterministic control action based 
on the given current state. The critic network outputs the 
Q-value based on both the state and action provided by the 
actor network. The actor network is further updated by maxi-
mizing the Q-value under the current policy, and the critic 
network is updated by minimizing the mean square error 
of the Q-value, which is the same as the DQN algorithm. In 
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figure 2. A multizone HVAC control framework with (a) a DQN and (b) a DDPG. 
DDPG: deep deterministic policy gradient. 
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addition, the DDPG algorithm adopts a stabilization strat-
egy by implementing the behavior and target networks for 
both the actor and critic networks, which is similar to the 
DQN algorithm. An overview of the DDPG approach for 
HVAC control is shown in Figure 2(b).

Evaluation of a Deep RL-Based HVAC 
Control Strategy Through Simulation
Our main objective is to evaluate the performance of the deep 
RL-based HVAC control strategy in a real-world environ-
ment. However, one cannot deploy an RL algorithm directly 
in a real-world environment and allow it to learn from scratch 
for two main reasons:

✔✔ RL-based approaches are essentially trial-and-
error methods (albeit with high intelligence) in which 

an RL algorithm interacts with the environment (i.e., 
the building or house) and learns from it based on 
the reward (i.e., operation cost) from the environment. 
Depending on the application, an RL algorithm might 
need long experience to learn how to behave optimally.

✔✔ During the initial learning phase, an RL algorithm tends 
to take random actions to explore and understand the 
environment. However, homeowners will not be happy 
if RL designates random setpoints on their thermostats. 
Therefore, instead of directly deploying an RL algo-
rithm from scratch in a real-world environment, like a 
building or house, we train and validate it in a simula-
tion environment as a starting point, allowing for faster 
development and overcoming the challenge of training 
RL in a real-world situation. Once we are satisfied with 
its performance in the simulation, we can deploy the 
pretrained RL model (the trained and deployable RL 
algorithm) in a real house.

In this section, we introduce the training and validation 
of a deep RL-based multizone residential HVAC control 
strategy on a simulation testbed with real-world data. Per-
formance comparisons with benchmark control strategies 
demonstrate the efficiency and generalization ability of 
model-free deep RL approaches.

Simulation Setup
The simulated HVAC building model requires weather-
related and price data. The weather data are taken from 
typical meteorological year (TMY) data from 2019 to 2020 
in Knoxville recorded by the National Renewable Energy 
Laboratory. For price data, the time-of-use price signals with 
a peak price at US$0.25/kWh and an off-peak price at  
US$0.05/kWh are applied. These input data sets are applied to 
a building simulation software testbed for the following training 
and validation of deep RL-based HVAC control strategies.

Training and Validation of  
the DQN for HVAC Control
We first present the simulation result of the DQN algorithm 
for multizone residential HVAC control. For training the algo-
rithm, the Knoxville TMY data from 21 December 2019 to 10 
March 2020 were utilized. The simulation step of the HVAC 
thermal dynamics is 1 min, and for every 5 min, the algorithm 
provides a setpoint control action. The user comfort level is 
set to 20–22.22 °C (i.e., 68–72 °F). The state information used 
in the DQN control includes all of the elements as listed in the 
“Deep RL Approach for HVAC Control” section. The DQN 
approach generates a discrete control action by adjusting the 
setpoint with a fixed step within the user comfort level.

The DQN algorithm was trained for 75 episodes with 
these settings. As mentioned earlier, we used approximately 
three months of data from 21 December 2019 to 10 March 
2020 for training the DQN algorithm. In this training pro-
cess, a single training episode is considered complete after 
the DQN algorithm has explored the three-month data. Next, 
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figure 3. The training performance of the DQN algorithm 
with the discrete control strategy: the (a) episodic cumula-
tive reward, (b) cost of operation, and (c) minutes outside the 
comfort level. 
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we repeated the same process for several episodes until the 
DQN algorithm converged. Within each episode, at every 
control step, the DQN algorithm observes the environment 
through various features (called states) and then takes actions 
that are implemented in the environment. For example, our 
DQN algorithm provides a setpoint as the action, which 
leads the environment to evolve into the next state, and then 
the same procedure repeats. At the end of each control step, 
the environment provides the reward in response to the DQN 
algorithm’s action. This reward could be the electricity cost 
incurred due to the DQN algorithm’s action. Based on this 
reward, the DQN algorithm then adjusts its Q-table. Readers 
may refer to Figure 2 and the relevant description for more 
details on DQN algorithm training.

It is important to evaluate the DQN algorithm’s training 
performance. Throughout the training, we keep track of the 
episodic average reward, total electricity cost of operating 
HVAC using the DQN for three months, and comfort viola-
tions that count the minutes during which the indoor tempera-
ture violated the user comfort level. The average reward, cost 
of operation, and minutes outside of the user comfort level dur-
ing the training are shown in Figure 3. In Figure 3(a), the episodic 
cumulative reward gradually increases as the training proceeds 
and stabilizes in the end. A 23% cost reduction is observed by 
the end of the training session in Figure 3(b). The minutes out 
of comfort also show a decreasing trend and remain at zero by 
the end of the training in Figure 3(c). These observations con-
firm the convergence of the DQN-based HAVC control.

The control performance of the pretrained DQN algorithm 
is further validated in unseen scenarios: two half-month 
Knoxville TMY data sets from 1–20 December 2019 and 
11–31 March 2020, which were not used during the training 

stage. A fixed-setpoint control strategy is designed as a 
baseline case for a comparison with the DQN-based HVAC 
control strategy. In the baseline case, the heating setpoint is 
always kept at 20 °C.

For brevity, we present the indoor temperature variations 
for operating the pretrained DQN-based HVAC controller on 
14–15 December in Figure 4. An important observation here 
is that the DQN control has learned a preheating strategy. 
The DQN control preheated the zones before the peak price. 
This was beneficial during the initial hours of the peak period 
where the power consumption was zero, as shown by the 
power consumption graph in Figure 4. This is how the DQN 
control achieved cost savings. The associated daywise energy 
cost comparison between the DQN control and baseline cases 
for 1–20 December is shown in Figure 5. We observed that 
the DQN approach achieved a >32% cost savings over the 
fixed-setpoint baseline for both the 1–20 December and 11–31 
March data. Full details of the entire duration of 1–20 Decem-
ber and 11–31 March are not plotted due to space limits.

Training and Validation of the  
DDPG for HVAC Control
For the DDPG algorithm, the Knoxville TMY data from 
1–30 November 2019 are utilized for training. The control 
interval of the DDPG algorithm is 60 min. The state 
information input to the DDPG algorithm includes the cur-
rent indoor temperature for each zone, outdoor temperature, 
and retail price as well as the lower bound of the user com-
fort level (Table 1). The DDPG algorithm directly generates a 
deterministic, continuous setpoint for each zone of the build-
ing’s HVAC system. The range of the setpoint is designated 
to be the same as the user comfort temperature zone. 
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The DDPG algorithm is trained for 300 episodes. After 
the training, the pretrained DDPG algorithm is further vali-
dated in two unseen scenarios: 1) with the Knoxville TMY 
data from 1–20 January 2020 and 2) with the same weather 
data as the first scenario but with 10 building models that 
have different thermal mass parameters from the simula-
tion testbed. The DDPG approach is compared with two 

benchmark control strategies: 1) a rule-based case, where the 
temperature is set at the lowest during the peak price hours 
and the highest during the off-peak price hours to achieve the 
preheating effect to reduce energy costs, and 2) a fixed-set-
point case, where the setpoint is always at the highest value 
of the setpoint range to avoid violation of user’s comfort level.

In the first scenario, the final optimized results of the 
DDPG algorithm and benchmark cases are shown in 
Table 2 in which the total energy cost is the accumulated 
energy cost over the 10 test days. The average comfort 
violation shows the average value, in degrees, by which 
the indoor temperature is lower than the setpoint. Table 2 
shows that the rule-based case has the lowest total energy 
cost because of its temperature setting logic based on 
the peak or off-peak price. However, this control strat-
egy may result in a severe comfort violation because it 
always designates the temperature setpoint to the lowest 
value at peak price hours. In contrast, since the tempera-
ture is always set at the highest value in the fixed-setpoint 
case, there is no temperature violation of the user’s com-
fort level. Meanwhile, the energy cost is also the highest 
among the three control strategies.

Since the temperature is always set at the highest value in 
the fixed setpoint case, there is no temperature violation of 
user’s comfort level. Meanwhile, the energy cost is also the 
highest among the three control strategies. The setpoint set-
tings and the associated indoor temperature variations based 
on the three approaches are illustrated in Figure 6. For each 
approach, its control strategies for zones 1 and 2 share simi-
lar patterns. Therefore, for the sake of simplicity, we plot 
only the control strategies of each approach in zone 1 in the 
figure and the control results in the first five days as repre-
sentative values. 

In all parts of Figure 6, the hour-by-hour yellow rect-
angular bars represent the user comfort level as acceptable 
temperature ranges, which correspond to Table 1. In Fig-
ure 6(a), it can be observed that the DDPG-based control 
will designate the setpoint at a relatively low value during 
the peak price hours and at a relatively high value during 
the off-peak hours. As such, the DDPG-based control can 
achieve the preheating effect and reduce energy costs dur-
ing the winter.

Figure 6(b) shows the results of the rule-based case, in 
which the control strategy designates the setpoint at the 
lowest value during peak price hours and the highest value 
during off-peak hours. When the outdoor temperature is 
extremely low, this control strategy results in severe indoor 

table 2. A performance comparison of three  
HVAC control approaches.

Control Approach DDPG
Rule 
Based

Fixed 
Setpoint

Total energy cost (US$) 55.21 39.08 71.48

Minutes out of user comfort 
level

48 2,617 0

Average comfort violation (°C) 0.13 1.85 0

We may conclude that the DDPG control can effectively solve 
unseen physical environments and provide an efficient and flexible 
HVAC control strategy after its offline training.

table 1. The daily user comfort level. 

Time Period
0:00–
6:00

6:00–
12:00

12:00–
18:00

18:00–
24:00

User comfort level: 
lower bound (°C)

18 17 18 19

User comfort level: 
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figure 5. A daywise cost comparison of the DQN-based 
HVAC control with the fixed-setpoint baseline for 1–20 
December 2019.
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temperature violation (i.e., between 
5,000 and 6,000 min in the figure), 
mainly due to the low setpoint. In 
contrast, the DDPG-based control 
strategy does not place the setpoint 
at the lowest possible value even 
during peak price hours to avoid 
comfort violations during the time 
of extremely low outdoor tempera-
tures. These comparisons show that, 
once well trained, the DDPG control 
has learned the impacts of the price 
signal and outdoor temperature on 
the reward, and it develops an intel-
ligent setpoint control strategy to 
accommodate both the price peak 
and low outdoor temperature.

Figure 6(c) shows the fixed-set-
point case, so-called because this 
control strategy always sets the 
temperature at the highest value. 
Thus, the indoor temperature also 
remains at the highest level among 
the three control strategies. Conse-
quently, this fixed-setpoint control 
leads to the highest energy cost.

Note that, when calculating tem-
perature or comfort violations, only 
the time when the indoor tempera-
ture is below the lower bound is 
counted. The reason is that this 
is a heating scenario, and a low 
indoor temperature is considered an 
unbearable violation, while a high 
indoor temperature is acceptable to 
residential HVAC users.

In the second scenario, the 
pretrained DDPG control strategy 
is validated with 10 unseen build-
ing models with different thermal 
mass parameters to demonstrate 
its generalization ability. Table 3 
shows a comparison of the energy 
costs and temperature violations 
for the DDPG control and two 
aforementioned benchmark con-
trols. As the table shows, like in 
scenario 1, the rule-based con-
trol gives the lowest energy cost, 
while the fixed-setpoint con-
trol gives the fewest violations. 
The pretrained DDPG control 
achieves a balanced HVAC con-
trol strategy that results in a rela-
tively lower energy cost and fewer 
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violations. Thus, we may conclude that the DDPG control 
can effectively solve unseen physical environments and pro-
vide an efficient and flexible HVAC control strategy after 
its offline training.

From these simulation studies, both the DQN and 
DDPG controls demonstrate a better HVAC control per-
formance compared with conventional approaches, like a 
fixed-setpoint or simple rule-based control strategy, which 
implies their considerable potential for online deployment. 
As shown in Table 3, the DDPG-based RL algorithm 
shows energy cost savings in the range of 19–29% (aver-
age = 25.9%) compared to the fixed-setpoint control in 
the simulation.

Since the DQN-based RL approach achieves slightly 
higher energy savings (e.g., >32% energy cost savings) com-
pared to the fixed-setpoint control, we selected the DQN-
based RL algorithm as the HVAC control strategy to deploy 
in the real house. The detailed deployment process and 
experiment results are introduced in the next section.

Deployment of a Deep RL-Based  
HVAC Control Strategy
To further validate the control performance of the deep RL 
approach in real-world scenarios, the pretrained DQN control 
for controlling the multizone HVAC system was deployed at 
the Yarnell Station research house in Knoxville, Tennessee, 

as shown in Figure 7. The house 
is equipped with a two-stage heat 
pump, two-zone control system, 
and two smart thermostats. The 
two-story house is zoned by floor 
with a smart thermostat located 
centrally on each floor. Supply air 
dampers are used to control the 
delivery of conditioned air from 
the heat pump to the appropriate 
zone(s) based on the call for condi-
tioning from the thermostats.

The zone controller manages the 
staging of the heat pump and indoor 
airflow rate, which is adjusted based 
on the number of zones calling for 
conditioning and the “size” settings 
of those zones (set using jumpers 
on the control board during the 
commissioning of the system). 
The staging of the heat pump is 
controlled based on a supply air 
temperature sensor located in the 
duct downstream of the air han-
dler. The staging is controlled to 
maintain a heating mode supply 
air temperature of at least 32.2 °C  
(90 °F). The power consumption 
of the heat pump, therefore, is de
pendent on the outdoor air tem-
perature, indoor temperature, and 
combination of zones calling for 
conditioning. During some con-
dition combinations, it may only 
be possible to elicit a single-stage 
response from the two-stage heat 
pump. With these many different 
conditions affecting the achievable 
power response, the system is dif-
ficult to accurately model, making 
it a challenging real-world applica-
tion for the deep RL approach. 

table 3. A comparison of results for different control strategies

DDPG Rule-Based Fixed Setpoint

Building
Index Cost (US$)

Comfort
Violation
(min) Cost (US$)

Comfort
Violation
(min)

Cost 
(US$)

Comfort
Violation
(min)

1 42.22 31 27.78 1,296 57.98 0

2 44.13 41 29.22 1,586 60.13 0

3 52.14 45 36.51 2,347 68.52 0

4 59.66 101 43.94 3,364 75.61 0

5 45.84 41 31.3 1,879 62.91 0

6 42.49 39 27.68 1,398 59.06 0

7 37.47 24 23.51 1,012 53.42 0

8 61.21 81 45.42 3,520 76.44 0

9 35.34 25 21.98 818 49.9 0

10 43.19 59 28.41 1,323 58.46 0

(a)

(b) (c)

figure 7. The Yarnell Station research house in Knoxville, Tennessee, United States: the 
(a) front view, (b) back view, and (c) data acquisition system. (Source: Oak Ridge National 
Laboratory, https://www.ornl.gov/content/smart-buildings; used with permission.)
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The DQN control strategy was 
deployed at the research house 
from 25 March to 5 April 2021. 
Since this period often has mild 
temperatures, the user comfort 
level was shifted higher than 
usual, i.e., 22.2–24.4 °C (72–76 °F),  
to ensure the home would ex
perience adequate heating load. 
The fixed-setpoint baseline case 
is used to compare the DQN con-
trol strategy’s performance dur-
ing the deployment phase. In the 
baseline case, the setpoint is fix
ed to 22.2 °C (72 °F) to minimize 
the energy cost while maintaining 
the user comfort level. However, 
it is not feasible to deploy the 
fixed-setpoint control under the 
same weather conditions in the 
same research house as the DQN 
deployment, so it is not straight-
forward to have a truly fair com-
parison between the DQN and 
baseline controls.

Instead, we can create a “sim-
ulated DQN” case using the re
corded thermostat setpoints and 
measured weather data during the 
DQN deployment. This allows 
us to evaluate the accuracy of the 
DQN simulation by comparing 
the measured to simulated results. 
More importantly, this makes a 
more direct comparison between 
the “simulated DQN” case and the 
baseline (fixed-setpoint) simulation 
case. The model parameters were 
adjusted based on the comparison 
between the measured data from 
the DQN deployment and “simu-
lated DQN” control to increase the 
accuracy of the simulation. In the 
following discussion, we present 
the details of this procedure and 
performance comparison.

The procedure of the compari-
son study, which is based on the 
DQN deployment, is as follows:

✔✔ Fi rst ,  we f ine - tune the 
building simulation model 
used for DQN training with 
the new data collected dur-
ing the DQN deployment 
period.
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figure 8. A comparison of the simulation and deployment results: (a) a simulated 
DQN case versus measured data for DQN control and (b) a simulated baseline case 
versus measured data for DQN control. BL: baseline.  
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✔✔ Next, we re-create the DQN’s deployment (in simu-
lation) by running the DQN’s setpoints through this 
building simulation for the duration of 1 March–5 
April 2021. This is referred to as the “simulated DQN” 
case, stemming from the actual DQN deployment.

✔✔ Then, we use this fine-tuned building simulation for 
the baseline case by using a fixed setpoint of 22.2 °C 
for the same duration. This later run mimics the de-
ployment of the fixed-setpoint baseline control in the 
research house during the deployment period.

It should be noted that, since we do not have any mea-
sured data for the baseline case to use for setting the initial 
temperatures in the simulation, we instead simulate an addi-
tional 3.5 weeks (i.e., 1–24 March 2021) of baseline opera-
tion before the period of interest. Simulating this additional 
time allows the modeled temperatures to stabilize to realistic 
values and minimizes the effect of any error associated with 
the selected initial temperatures.

The results from the “simulated DQN” case using the 
retrained model and baseline simulation case employ-
ing the fixed-setpoint control are shown in Figure 8(a) 
and (b), respectively. In the top plot of Figure 8(a), the 

Tin1_sim_DQN curve (in blue) shows the temperatures of 
the “simulated DQN” case of the first floor in the research 
house, while Tin1_sim_BL (in blue) in Figure 8(b) shows 
the temperatures of the simulated baseline case (i.e., fixed-
setpoint control) on the first floor. Note that, in both top 
plots of Figure 8(a) and (b), the red Tin1_Tstat curve, which 
represents the temperatures measured by thermostats dur-
ing the DQN deployment, is plotted as a reference to signify 
the difference between the “simulated DQN” and baseline 
cases. The “simulated DQN” case closely resembles the 
DQN deployment because the two curves in the top plot of 
Figure 8(a) are very close. Thus, the comparison between the 
“simulated DQN” and baseline is highly credible. It is also 
evident that the fixed-setpoint control gives quite different 
results from the DQN deployment.

The mid plots in Figure 8(a) and (b) represent the second 
floor of the research house and show similar patterns to the 
first floor. The bottom plots show the simulated and mea-
sured power use of the HVAC system. We may observe in 
the bottom plot of Figure 8(a) that the measured power usage 
during the DQN deployment (in red) matches well with the 
power usage in the simulated DQN case (in blue). This also 

table 4. The daily electricity cost and energy use comparison between DQN/RL and the fixed-setpoint baseline.

Baseline DQN/RL Cost Reduction

Date
Simulated 
Cost (US$)

Simulated 
Energy 
(Wh)

Simulated 
Cost (US$)

Measured 
Cost (US$)

Simulated 
Energy 
(Wh)

Measured 
Energy 
(Wh)

DQN/RL 
Simulated 
Versus Baseline 
Simulated (%)

DQN/RL 
Measured 
Versus Baseline 
Simulated (%)

25 March 1.19 10,475 1.18 1.47 16,338 19,602 0.8 –23.5

26 March 0.84 5,005 0.64 0.73 5,670 6,824 23.8 13.1

27 March 1.63 13,886 1.29 1.35 18,094 18,892 20.9 17.2

28 March 1.06 9,766 0.97 1.17 12,874 15,650 8.5 –10.4

29 March 2.69 19,316 2.23 2.09 21,025 21,506 17.1 22.3

30 March 2.18 14,412 1.59 1.57 14,311 14,871 27.1 28

31 March 1.11 13,453 1.08 1.11 15,884 16,089 2.7 0

1 April 3.38 29,741 3.02 2.82 31,657 29,552 10.7 16.6

2 April 3.79 31,228 3.7 3.47 33,272 31,867 2.4 8.4

3 April 3.31 24,237 3.31 3.04 26,208 25,751 0 8.2

4 April 2.48 16,872 1.87 1.82 17,582 17,884 24.6 26.6

All 23.67 188,389 20.9 20.64 212,915 218,488 11.7 12.8

With these many different conditions affecting the achievable 
power response, the system is difficult to accurately model, making 
it a challenging real-world application for the deep RL approach.
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verifies the accuracy of the fine-tuned building simulation 
model. In addition, the bottom plot of Figure 8(b) shows 
the power consumption from the baseline case (in blue) and 
measured power (in red); the difference between the base-
line power consumption and measured power in Figure 8(b) 
is greater than that in Figure 8(a), which demonstrates the 
considerable difference between the fixed-setpoint baseline 
case and “simulated DQN” case.

Table 4 shows a breakdown of the daily energy cost and 
consumption comparisons for the DQN-based RL control 
approach and fixed-setpoint baseline case. The daily cost 
savings from the DQN control (either simulated or deployed) 
range from 0 to 28% (except for a couple of outlier days with 
negative cost savings), depending on the day. While there are 
some fluctuations in the day-to-day comparison of energy 
use as well as the cost of the simulated and measured DQN 
cases, the overall energy use and cost over the 11-day deploy-
ment have a difference of less than 3%. This indicates that the 
building simulation is well calibrated. The significant obser-
vation from Table 4 is that the DQN cases (either simulated 
or deployed) consumed more energy than the baseline while 
still managing to reduce the total cost by 11.7% and 12.8%, 
respectively, in comparison with the baseline case. This is 
because the DQN control preheats the home to a higher tem-
perature during low-price periods such that the total cost is 
decreased, while more energy is consumed, and the comfort 
level is better. 

Note that the minor difference between the simulated 
DQN case and DQN deployment is likely due to a combi-
nation of factors, including small inaccuracies associated 
with the building model compared to the real-world building 
response and difference in HVAC response over the decision 
interval of 5 min. Future performance improvements dur-
ing deployment could be achieved by decreasing the deci-
sion interval of the DQN control to a shorter interval and the 
inclusion of online learning to fine-tune the decisions of the 
DQN control over a longer operational period.

Summary
This article explores the application of deep RL approaches 
to implement energy management in a multizone residential 
HVAC system to minimize energy costs and maintain user 
comfort. Both simulation and real-world deployment results 
demonstrate that the deep RL approach can learn an HVAC 
control strategy that is more economical, generalized, and 
adaptive than either the rule-based or simple fixed-set-
point control strategy. The results signify that the deep RL 

approach is of considerable potential for online applications 
in solving complex control and optimization problems like 
residential demand management.

For future directions, an interesting topic would be to 
further investigate the generalization ability of deep RL 
approaches, for example, to make the control workable for 
various scenarios, including both cooling and heating as 
well as idle scenarios, without additional retraining efforts. 
Another promising direction would be physics-informed 
deep RL, which would introduce physical laws to guide the 
exploration of the approach and further improve learning 
efficiency. Further, similar approaches based on machine 
learning may be extended from HVAC control to other 
building energy controls.
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The results signify that the deep RL approach is of considerable 
potential for online applications in solving complex control and 
optimization problems like residential demand management.
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