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Electricity consumption variation versus
economic structure during COVID-19 on
metropolitan statistical areas in the US

Jinning Wang 1, Fangxing Li 1 , Hantao Cui1, Qingxin Shi1 & Trey Mingee1

The outbreak of novel coronavirus disease (COVID-19) has resulted in changes
in productivity and daily life patterns, and as a result electricity consumption
(EC) has also shifted. In this paper, we construct estimates of EC changes at the
metropolitan level across the continental U.S., including total EC and resi-
dential EC during the initial two months of the pandemic. The total and resi-
dential data on the state level were broken down into the county level, and
then metropolitan level EC estimates were aggregated from the counties
included in each metropolitan statistical area (MSA). This work shows that the
reduction in total EC is related to the shares of certain industries in an MSA,
whereas regardless of the incidence level or economic structure, the resi-
dential sector shows a trend of increasing EC across the continental U.S. Since
theMSAs account for 86%of the total population and 87%of the total EC of the
continental U.S., the analytical result in this paper can provide important
guidelines for future social-economic crises.

COVID-19 broke out and spread rapidly in the U.S., compelling human
society to reduce activities involving physical contact. Enforcement of
shelter-in-place orders in many states led to transformations in peo-
ple’s working and living styles, such as the rise of the work-from-home
model and decreased commuting needs1. As a result, the demand for
energy resources, such as gasoline, jet fuel, coal, and natural gas,
experienced a sharp decrease2–4. The drastic minimization of human
activities also impacted the environment, both positively and nega-
tively. While greenhouse gas emissions underwent a dramatic
decline5–7 and air quality, beach cleanliness, and environmental noise
levels improved, increased waste, especially medical waste, was
recognized as a challenge8,9. The electric power industry was also sig-
nificantly impacted during the pandemic, and that impact will be the
topic of this work.

On the electricity generation side, the share of renewable power
generation has increased continually during the COVID-19
pandemic10–12. This is due primarily to policy support and the con-
tinuously decreasing cost of renewables despite lags in the supply
chain and delays in the deployment process13. Meanwhile on the
electricity demand side, total electricity consumption (EC) decreased
and EC composition changed14, with the daily peak demanddecreasing

and arriving during later hours15. Power infrastructure maintenance
was also affected due to supply chain disruptions16. To secure both the
power supply and their employees’ health, the electric power industry
overall reacted rapidly and effectively by encouraging employees to
work from home, monitoring employee health conditions, and
extending employee shift times to reduce infection16. Despite the clear
overall trends within the electric power industry, the implications of
the pandemicon the power griddiffer from region to region across the
continental U.S. For example, while a significant reduction in demand
occurred in the midcontinent area, the electricity demand in Florida
remained almost unchanged17. In addition, the sensitivity of total
demand to the mobility of the retail sector has varied between cities18.
However, detailed shifting patterns of nationwide EC are not available.
Because EC and economic production are frequently linked, it is well
known that the gross domestic product (GDP), as an index of eco-
nomic production, can forecast EC19–22. However, EC is not only linked
to economic output, but also to economic structure, which can affect
the EC projection23,24. In other words, changes in the economic struc-
ture can cause shifts in EC25,26. This study considers each metropolitan
statistical area (MSA) as the basic unit and explores the connection
between economic structure and EC shift patterns following the
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beginning of the pandemic in the U.S. In summary, county-level EC has
been calculated using the GDP, population, and state-level EC data.
Then MSA-level EC estimates are aggregated from county-level EC
data. The estimates cover 380 MSAs in the continental U.S. out of the
total 384 MSAs rigorously defined by the United States Office of
Management and Budget. EC estimates for the remaining 4 MSAs
located in Hawaii and Alaska were not calculated. These 380 MSAs
account for 86% of the total population and 87% of the total EC of the
continental U.S., while the rural areas account for 14% of the total
population and 13% of the total EC. Thus, understanding the EC pat-
terns and economic structures of these MSAs is of great importance.
The studied timeperiods are April–May 2019 andApril–May2020, and
the data for these time periods includes total EC and residential sector
EC. The April–May time period was selected because the first two
months of the pandemic in the U.S. are critical to understanding the
pandemic impact on EC, as there was no preparation or organized
response to such a social-economic emergency. The detailed data
resources and analysis procedures are discussed in the “Methods”
section.

The metropolitan-level perspectives in this study help to
demonstrate the connection between EC and economic structure
because MSAs accommodate a high population density and integrate
sizeable industries.

Based on the above motivations, this paper constructs estimates
of metropolitan level EC variation from April–May 2019 to April–May
2020 in the U.S. Here, we show that there is an evident pattern shift of
total EC, and the patterns are different for different economic struc-
tures in different metro areas. Meanwhile, although there is a nominal
residential load increase of a few percentage points across all pan-
demic incidence levels and economic structures, the amount of resi-
dential load increase is not related to particular levels of pandemic
severity or particular economic structures.

Results
COVID-19 incidence map on the metropolitan level during
April–May 2020
After the first COVID-19 case was confirmed in the state ofWashington
in January 2020, it spread throughout the U.S. at an unexpected speed.
Most states issued stay-at-home orders before the end of March,
shutting down unessential places to restrain the pandemic’s spread.
The pandemic entered a plateau in the U.S. during April and May.
However, when it came to the end of May, the reopening process and
mass gathering activities accelerated pandemic spread and increased
EC. To analyze the impact of stay-at-home orders on EC during the
pandemic, this paper specifies the timewindow between 1 April and 31
May 2020. The information from these first two months represents
initial and unprepared responses to the COVID-19 pandemic, and thus
has the most significant implication for a similar future social-
economic emergency leading to a lockdown.

Figure 1 shows the COVID-19 incidence map of the 380 MSAs in
the continental U.S. during the two-month window from April to May
2020. The COVID-19 incidence of MSAs are calculated based on Eq. (2)
(see the “COVID-19 incidence level calculation” subsection of the
“Methods” section for incidence level calculation) and plot on themap
from U.S. Census Bureau27. The pandemic situation on the west coast
(e.g., the states of Washington, Oregon, and California) was low to
medium, and the situation along the southeastern coast (e.g., the
states of North Carolina, South Carolina, Georgia, and Florida) was
medium. However, states along the northeastern coast were experi-
encing high-to-critical levels of COVID-19 incidence. The largest critical
area was the MSA of New York-Newark-Jersey City, NY-NJ-PA, which
encompasses 20 million people. Along the northeastern coast, there
were two other MSAs at critical incidence levels: Vineland-Bridgeton,
NJ and Salisbury, MD-DE. The incidence level map shows geographical
relevance among these areas since the adjacent MSAs to New York-

Newark-Jersey City, NY-NJ-PA also experienced a high incidence of
COVID-19 at this time.

Economic structure features
Based on the economic structure described by the 20 selected GDP-
related variables, the areas of different incidence levels are categorized
into separate clusters, respectively (See “Economic structure cluster-
ing analysis” subsection in the “Methods” section). Figure 2 shows the
economic structure of cluster centers of low (Cluster I and II), medium
(Cluster III, IV, and V), and high incidence level (Cluster VI, VII, and VIII)
MSAs. It should be noted that a cluster center is calculated from the
mean value of all the observations in the corresponding cluster. For
simplicity, Fig. 2 shows the categories that demonstrate statistically
significant difference among each cluster (i.e., difference from MSA
averages), while all other categories with no significant difference
among different clusters are combined into “Other categories.” Fur-
ther, GDP categories are rearranged as follows: (1) management,
administrative, and educational services are combined as “MAE ser-
vice”; (2) information, finance/insurance, and professional services are
combined as “high-end services”; and (3) the “Other categories”
include construction, wholesale trade, retail trade, accommodation/
food services, arts/entertainment/recreation, and other services.
There are 11 MSAs in critical COVID-19 incidence level with no sig-
nificant clustering trends, so the clustering results from these 11 MSAs
are not discussed in the economic clustering analysis below. For
comparison, the average economic composition of all 380 MSAs is
displayed as different sections in the stacked bar chart in Fig. 2. The
clusters’ unique economic characteristics are summarized as follows.

• In terms of agriculture/forestry, Cluster V and VI have a higher
percentage when compared to the MSA average level. Further-
more, one can also observe that the share of manufacturing of
these two clusters is larger than the average level.

• Regarding the mining industry, Cluster II and IV have a higher
proportion than the MSA average level. Similarly, the transpor-
tation/warehousing of these two clusters is also above the
average level.

• As for real estate/leasing, Cluster I and VIII have a higher share
than the MSA average. Also, their percentage of public admin-
istration is greater than the MSA average.

• Another noteworthy point is that Cluster III and VII have a higher
percentage of high-end services and MAE services.

• The MSA average is shown by the last bar of the figure for easy
comparison.

EC variation on the metropolitan level after COVID-19
Following the initial outbreak of COVID-19, the stay-at-home trend led
to fewer human activities in industrial and commercial sectors.
Therefore, total EC experienced a remarkable decrease, while resi-
dential EC enlarged widely since people stayed at home for much
longer periods of time than usual.

Figure 3 shows the EC change in the U.S. on themetropolitan level
after the pandemic began. The EC variation ofMSAs are estimated (See
“EC estimates” subsection in the “Methods” section) and plot on the
map fromU.S. Census Bureau27. It shows the overall trend that total EC
declined while residential EC increased, which is reasonable due to the
implementation of the work-from-home model, although some
regions experienced the opposite change.

Figure 3a illustrates the total change in EC at the metropolitan
level in the April–May two-month window in both 2019 and 2020. It
can be seen that the electricity demand shrinks in most regions of the
country. The sharpest decline (−15.18%) occurred in Muskegon in the
state of Michigan, and other MSAs in Michigan also experienced more
than a 12% decrease in total EC, where the 95% confidence interval (CI)
of the average value is [−14.67%, −13.89%], n = 15, and the alpha used
here is 0.95, which is the default threshold value in the rest of this
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paper. Similarly, MSAs in themidwestern states (Illinois, Indiana, Iowa,
Kansas, Michigan, Minnesota,Missouri, Nebraska, North Dakota, Ohio,
South Dakota, and Wisconsin) decreased by about 8.88% in total EC,
where the 95% CI is [−9.71%, −8.06%], n = 96. It should be noted that
there are many different definitions of U.S. regions by various gov-
ernment agencies, and the regions in this paper are loosely defined for
illustrative purpose. Total EC decreases in the northeast (New York,
Connecticut, Maine, Massachusetts, New Hampshire, New Jersey,
Pennsylvania, Rhode Island, and Vermont) were about 7.45%, where
the CI is [−7.89%, −7.01%], n = 51. On the west coast, the decreasing
patterns in the state of Oregon (CI = [−2.13%, −1.33%], n = 8) were
lighter than in the state ofCalifornia (CI = [−7.13%,−6.63%],n = 26) and
the state of Washington (CI = [−7.08%, −4.04%], n = 13). Decreases in
the southeastern and nearby states (Alabama, Florida, Georgia, Ken-
tucky, Maryland, Mississippi, North Carolina, South Carolina, Tennes-
see, Virginia and West Virginia) were also somewhat significant
(CI = [−9.69%, −8.07%], n = 114). Meanwhile, MSAs in Florida saw nota-
bly smaller decreases in total EC, where the CI is [−3.65%,
−3.17%], n = 22.

Despite the overall decrease in total EC, some MSAs in the south
consumedmore electricity after the pandemic took hold. The total EC
of MSAs in the states of Louisiana, Texas, and New Mexico increased
slightly, where the CIs are [0.69%, 1.21%], [1.32%, 2.14%], and [2.70%,
3.51%], respectively, and the sample sizes are 9, 25, and 4, respectively.

MSAs in the state of Arizona consumed much more electricity, where
the CI is [8.59 %, 9.85%], n = 7. The largest increase in total EC occurred
in Sierra Vista-Douglas, AZ (10.47%). The total EC of regions in the
states of North Dakota, Idaho, and Nevada also increased slightly.

In contrast, Fig. 3b depicts the variation of residential EC on the
metropolitan scale between April–May 2019 and April–May 2020.
Nationally, the residential sector saw an increasing trend. The largest
increase in residential sector EC occurred in Phoenix-Mesa-Chandler,
AZ (29.05%). Other MSAs in Arizona and Nevada also experienced
remarkable expansions of more than 20% in residential EC, where the
95% CIs are [26.88%, 28.65%] and [24.30%, 25.92%], respectively, and
the sample sizes are 7 and 3, respectively. MSAs in other southern
states of New Mexico, Texas, Louisiana, and Florida also increased
largely in the residential sector, where the CIs are [14.25%, 17.23%],
[8.83%, 9.95%], [7.23%, 8.04%], and [7.53%, 9.23%], respectively, and the
sample sizes are4, 25, 9, and 22, respectively. Thenortheastern regions
(New York, Connecticut, Maine, Massachusetts, New Hampshire, New
Jersey, Pennsylvania, Rhode Island, and Vermont) also experienced a
large expansion in residential EC, where theCI is [8.32%, 10.18%], n = 51.
Similar increases in residential sector EC were also observed in Cali-
fornia and Oregon, where the 95% CIs are [9.71%, 10.73%] and [7.61%,
9.38%], respectively, and the sample sizes are 26 and 8, respectively. In
contrast, the increases in the state of Washington were moderate,
where the CI is [3.40%, 4.88%], n = 13. Similarly, slight increases of

Fig. 1 | COVID-19 incidence map. COVID-19 Incidence map of 380 metropolitan statistical areas in the continental U.S. during April–May 2020.

Fig. 2 | Cluster centers of MSA economic structure. The length of each colored bar represents the GDP percentage of the corresponding economic category.
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Fig. 3 | Spatial heterogeneity in EC change on metropolitan level after COVID-19. a Total EC change. b Residential EC change.

Fig. 4 | Total EC variation among different clusters.Box andwhisker plots of total
EC variation of April–May 2020 in comparison to pre-pandemic level; boxes depict
the upper and lower quartiles of the data; black solid lines depict the median values;
whiskers depict the range of the data excluding outliers (outliers are defined as
observations larger than 1.5× the inter-quartile range from the upper or lower quar-
tiles); the grey dashed line depicts the median value of the total EC variation of 380

MSAs. Two-sided Wilcoxon rank sum tests of each Cluster versus all the MSAs are
performed, and n2 = 380 which is the case for all the eight tests. Cluster I: p=0.0709,
n1=44,W=−1.8063; Cluster II: *p=0.0116, n1= 19,W=−2.5246; Cluster III: p=0.4784,
n1= 110, W=0.7088; Cluster IV: ****p< 1e-4, n1=42, W=−4.2970; Cluster V:
***p=0.0001, n1= 120, W=3.8057; Cluster VI: p=0.6487, n1= 13, W=0.4556; Cluster
VII: p=0.8865, n1= 16, W=−0.1427; Cluster VIII: p=0.8476, n1=5, W=−0.1921.
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residential EC occurred in the central U.S. regions (e.g., the states of
Utah, Colorado, Kansas, Oklahoma, Missouri, Illinois, Indiana, and
Kentucky), where the aggregated CI for these eight states is [5.93%,
7.80%], n = 60, and each individual state’s variation pattern is similar,
as shown in the colored map in Fig. 3b. Also, we may observe a few
transitional states such as Virginia, where the residential sector EC
reduced very slightly, with theCI being [−1.62%, −0.81%] (n = 7)which is
lower than the CIs of the northeastern states and higher than the
southeastern states; for example, residential EC dropped by no more
than 1% in Richmond, VA. Note, the above discussion lists a few high-
level patterns observed as examples, while it does not necessarily
cover all MSAs in every state. More details can be found in the data set
provided in the “Data Availability” section.

By comparison, residential EC in parts of the southeastern region
changed in the opposite direction. Decreases occurred in North Car-
olina, South Carolina, Georgia, and Alabama, where the CI is [−5.25%,
−4.42%], n = 51. The largest reduction occurred in Florence, SC which
decreased by 8.77% in the residential sector. The results show EC
changes across the U.S. at the metropolitan level. It can be observed
that although EC variation patterns differed from region to region, the
overall trend in EC was towards a decrease in total EC and an increase
in residential EC.

EC variation and economic structure
Economic structure reflects the industry and commercial components
of a specific area, impacting EC. As such, reductions in EC caused by
lockdown policies are interconnected with the economic structure.
For example, New York Independent System Operator (NYISO)
observed that the decline in electricity demand in the state of New
York ismainly attributed to reduced commercial sector consumption3.

Figure 4 shows the boxplot of total EC variation between
April–May 2019 and April–May 2020 on themetropolitan level among
different economic structure clusters. It clearly demonstrates an
overall pattern of total EC reduction across all clusters. If we connect
Figs. 4, 2 to build some connections between total EC reduction and
economic structures, the following observations can be presented.

• The total EC change indicates that Clusters II and IV have sig-
nificantly higher EC reduction than the average. Both of them

have a sizable mining industry (about 7%) while other economic
categories are similar to the MSA average, as shown in Fig. 2.
Thus, it can be inferred that MSAs with a high proportion of
mining industry saw less EC reduction than other MSAs (i.e.,
mining industry EC is less affected during the pandemic), which
is evidenced by a statistical difference in total EC reduction of II-
and-IV versus other MSAs (Wilcoxon rank sum test: ****p < 1e-4,
n1 = 61, n2 = 319, W = 5.6761). This is reasonable, because the
mining industry forms a significant portion of total electricity
demand.

• Another significant observation is that both Clusters V and VI
have a significantly higher proportion of agriculture/forestry
and manufacturing than the MSA average, while their other
economic categories are similar to theMSAaverage. The total EC
of both clusters seem to have greater declines than the average
level of total EC (i.e., the grey dashed line in Fig. 4), so this shows
that agriculture/forestry and manufacturing tend to have more
EC reduction during pandemic than other categories. Further
observation is that the total EC of Cluster VI has less reduction
than Cluster V, which can be possibly ascribed to higher mining
industry share in Cluster VI than in Cluster V because mining
industry EC is less affected during the pandemic, as discussed
previously.

• Clusters III and VII share similar economic structure character-
istics, with a concentration on intelligence-intensive services
such as the economic category of high-end services (i.e.,
information, finance/insurance, professional services) and the
category of MAE (i.e., management, administrative, and educa-
tional) services. However, the total EC of Clusters III-VII does not
demonstrate statistically significant differences versus the total
EC of other MSAs (Wilcoxon rank sum test: p = 0.3919, n1 = 126,
n2 = 254,W = −0.8516). Thus, it canbe statistically concluded that
the load reduction in the high-end services and MAE services is
aligned with average EC reduction. The possible reason is that
although the computing loads of high-end andMAE services are
shifted from offices to homes, and the residential home air
conditioning loads stay at the same level before and after the
pandemic, the air conditioning and lighting loads in commercial

Fig. 5 | Residential EC variation among different clusters. Box and whisker plots
of residential EC variation of April–May 2020 in comparison to pre-pandemic level
in April–May 2019; boxes depict the upper and lower quartiles of the data; black
solid lines depict the median values; whiskers depict the range of the data
excluding outliers (outliers are defined as observations larger than 1.5× the inter-
quartile range from the upper or lower quartiles); the grey dashed line depicts the
median value of the residential EC variation of 380MSAs. Two-sidedWilcoxon rank

sum tests of each Cluster versus all the MSAs are performed, and n2 = 380 is the
case for all eight tests. Cluster I: p =0.5535, n1 = 44, W =0.5926; Cluster II:
p =0.4344, n1 = 19,W = −0.7817; Cluster III: p =0.3734, n1 = 110,W =0.8901; Cluster
IV: **p=0.0023, n1 = 42, W = −3.0518; Cluster V: p =0.0992, n1 = 120, W = 1.6488;
Cluster VI: p =0.6684, n1 = 13, W =0.4283; Cluster VII: p =0.0994, n1 = 16,
W = −1.6477; Cluster VIII: p =0.0648, n1 = 5, W = −1.8465.
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buildings should reduce considerably during the initial months
of the pandemic. This makes the reduction pattern of high-end
and MAE services similar to other economic categories.

• Both Cluster I and VIII feature a disproportionately high share of
the real estate/leasing and public administration industries in
their economic structure, where the total EC reduction for the
combination of Cluster I and VIII is statically less than in other
clusters (Wilcoxon rank sum test: *p = 0.0452, n1 = 49, n2 = 331,
W = 2.0032). It means that the real estate business and public
administration categories tend to have less reduction in total EC
than other categories.

• Regarding the impacts of the pandemic, total EC changes among
different incidence MSAs do not show an obvious pattern.

In summary, based on the observation, while there is an overall
patternof reduction in total EC across all clusters, the total EC variation
is statistically related to economic structure during the initial months
of COVID-19. More specifically, economic structures more dependent
on the mining industry exhibit significantly less EC reduction than
other categories, and real estate/leasing and public administration
industries also demonstrate less EC reduction after the start of the
COVID-19 pandemic. In contrast, agriculture/forestry and
manufacturing-dependent economic structures exhibit more EC
reductions than other categories. Further, the EC reduction of
intelligence-intensive services (e.g., high-end services,MAE services) is
not significantly different from other categories.

Figure 5 shows the boxplot of residential EC variation between
April–May 2019 and April–May 2020 at the metropolitan level among
different economic structure clusters. It evidently demonstrates an
overall pattern of residential EC increase across all clusters. The figure
shows that the residential EC increase in Cluster IV is higher than the
average level. However, no obvious reason can be concluded. Cluster
VII and VIII are also well above the average level, but the difference is
not statistically significant. The reason is that the small sizes of
observations of Cluster VII and VIII result in statistical insignificance.
Overall, themedian values among other clusters were not significantly
different, and the median values of residential EC increases of all
clusters are ~7–10%.

In summary, total EC variation during the initial months of
COVID-19 is shown to be mainly related to economic structure,
whereas residential EC is shown to have increased regardless of
economic structure and COVID-19 incidence level.

Observation and verification from other reports
Metropolitan-level EC data across the nation is not available because
the grid is operated by the power system operator which is across
administrative divisions, and the reductions are reported among the
service territory rather than each MSA. However, partial estimates of
electricity demand reduction for regions can be verified by reports
from the California Energy Commission (CEC) and other power grid
operators such as the Midcontinent Independent System Operator
(MISO) and PJM.

The CEC reported that, in California, average weekday total EC
reduced by 9% in April 2020 compared to the same period in 201928. In
our estimation, the average MSA level reduction in total EC in Cali-
fornia is 6.9%, where the 95% CI is [−7.1%, −6.6%], n = 26 in April–May
2020 compared to the same two-month period in 2019. Because the
reduction on weekends is roughly 5%-10% lower than on weekdays14,15,
the numbers from the CEC report are roughly aligned with our esti-
mates. In addition, the CEC observed that, in California, the increase of
the residential EC ranged from 8.9% to 12.4% for the five-month win-
dow of January-May 2020 in comparison to January-May 2019. In
contrast, we estimated that the reduction in MSA demand in the resi-
dential sector in California was about 10.2% between April–May 2019
and April–May 2020, which is almost the middle of the CEC-reported

range [8.9%, 12.4%], n = 26. Further, MISO, which covers most parts of
11 states in the midwestern U.S. and Manitoba in Canada, observed a
9.34% decrease in total EC during April–May 2020 as compared to
April–May 201929. In our estimates among the states in the MISO ser-
vice territories (North Dakota, South Dakota, Minnesota, Iowa, Wis-
consin, Michigan, Illinois, Indiana, Arkansas, Mississippi, and
Louisiana), the average level of metropolitan reduction in total elec-
tricity demand is 8.0%, where the 95% CI is [−9.1%, −6.9%], n = 84. In
addition, PJM, a regional transmission organization that operates
electricity markets, reported about a 10%-14% decrease in the first half
May 2020 and 6%-11% decrease between May 16 to June 3, 202030. In
our estimates, the MSAs in the PJM service territory (Delaware, Illinois,
Indiana, Kentucky, Maryland, Michigan, New Jersey, North Carolina,
Ohio, Pennsylvania, Virginia, West Virginia, and the District of
Columbia) experienced a 9.3% reduction in total electricity demand
during April–May 2020, where the 95% CI is [−10.1%, −8.8%], n = 118.
Although the territories of MISO and the time-windows of the reports
from the CEC and PJM are not exactly the same as in our estimates, our
estimated reduction in total EC is essentially consistent with these
reports.

In summary, the constructed metropolitan level electricity
demand estimate is consistent with actual measurements from the
CEC, MISO, and PJM. The reports from these operators confirm the
credibility of our estimates of the EC variation on the metropolitan
level for the two-month window of April–May in 2019 and 2020.

Sensitivity analysis
The source data is critical to the results, which are updated and
modified over time by the publisher. The COVID-19 data at the county
level have been updated, resulting in changes in two MSAs out of a
total of 380. GDP data at the MSA level were updated with 2019 data,
which affects the economic structure of the MSAs. However, as shown
in Supplementary Table 1, the gap between GDP categories within the
same clusters is not significant.

The U.S. Energy Information Administration also updates the EC
data at the state level, including the EC for 2020, which influences the
EC estimates at theMSA level. As illustrated in Supplementary Table 2,
the EC change with the updated data is relatively small in comparison
to the previous version data. However, in the subsequent pattern
analysis of EC variation, only Cluster V of residential EC changed from
significant (*p =0.0369, n1 = 104, n2 = 380, W = 2.0873) to insignificant
(p = 0.0992, n1 = 120, n2 = 380, W = 1.6488), while the Wilcoxon rank
sum tests of other clusters remained unchanged.

In summary, although the datawere updated andmodified during
the development and revision of this paper, the analysis of the EC
variation patterns persist with robustness. This further demonstrates
the credibility and robustnessof the ECpatterns related to the clusters.

Limitations
In this article, the nationwide estimates of ECon themetropolitan level
in the U.S. are implemented with limited data. This limitation under-
lying the “Methods” sectionof this paper can be explored in the future:
(1) The EC estimates rely on the assumption that the linear relation-
ships between GDP-Total EC and Population-Residential EC are extra-
polated from counties in California to other counties across the
continental U.S. Although the linear relationship at the state level
implies the effectiveness for the sum of the EC of all the counties in a
state which is also the basis for the estimates of EC at theMSA level, its
validity remains to be confirmed by other available county-level EC
data. However, such data is not readily available at this time, and is
difficult to collect. Also, in the extrapolation, uncertainties can be
introduced by the degraded linearity between the county-level EC,
GDP, and population in other states. Data transformation can be
applied to assure the linearity. (2) The modeling of EC has drawn
attention from many researchers and various methods have been
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proposed31–34. Although this article provides an easy-to-implement and
effective way to estimate the EC on the MSA level, the accuracy of the
estimation method will benefit from more data sources and more
refined modeling methods, climate variables such as cooling-degree-
days and other economic variables such as GDP per capita can be
introduced as control variables to enhance the model of EC35,36. Fur-
ther, a more comprehensive survey on the energy supply during the
pandemic can lend from panel data analysis involving economics,
electricity, petroleum, and gas37,38.

Discussion
This paper proposes an easy-to-implement and effective method for
estimating EC change under a widely applied lockdown policy, and
reveals the connections between EC change and economic structure.
By considering the economic features of regions as they relate to
potential pandemics or other social-economic crises as a set of new
regulation rules or constraints, power grid administrators can
improve energy resource planning and power grid operation such
that the future power systems will be pandemic-ready. Our EC
change estimation method may potentially change the model of
power grid constraints. A most recent example is the ongoing trend
of incorporating of cyber-physical security (CPS) into power system
operation and planning, in addition to classic physics-based security
constraints. In other words, power grid constraint models may
evolve from physics-only (conventional practices) to physics-and-
CPS constraint models (as in some ongoing research works), and
eventually to physics-CPS-and-pandemic all-inclusive constraint
models (future studies). Thus, the impact of this work will be fun-
damental and substantial.

Our estimates of EC variation at the U.S. metropolitan level reveal
the impacts of a large-scale lockdown policy following the outbreak of
COVID-19 on both total EC and residential sector EC. Our estimates
also show how EC variation is affected by the economic structure of
different MSAs.

Our estimates indicate an overall decrease in total EC and an
increase in residential sector EC. Although total EC decreased in most
MSAs, the reduction amount differs fromregion to region. Basedon in-
depth analysis of economic structures, we have found that the
reduction in total EC is related to the shares of certain industries in an
MSA. High percentage shares in the mining industry and real estate/
leasing are related to smaller decreases in total EC, whereas a large
reduction in total EC is related to a high share of manufacturing. In
contrast, regardless of the incidence level or economic structure, the
residential sector shows a trendof increasing EC across the continental
U.S. Seemingly, the increase in residential consumption was brought
by the shelter-in-place orders issued during the April–May 2020 time
period. Following the pandemic, some organizations may allow
employees to work from home permanently, indicating that the pan-
demic may affect people’s lifestyles and society over a longer time
scale than the temporary lockdown time. As a possible result, varia-
tions in both total and residential sector EC caused by the pandemic
may never completely return to pre-pandemic levels.

The comparison of EC variation between different incidence
levels is shown in Supplementary Table 3. One can observe that the
total EC in lower incidence MSAs experienced less of a decrease than
the MSAs in higher incidence levels, whereas the change in residential
EC between MSAs at different incidence levels was not significant.
Another interesting observation is that the correlation between
COVID-19 incidence level and EC varies with respect to time. In the
April–May time window at the state level, the Pearson coefficients
between COVID-19 incidence and EC (total, residential) increased from
(0.21, 0.22) to (0.36, 0.40), respectively, whereas the Pearson coeffi-
cients between COVID-19 deaths and EC (total, residential) increased
from (0.17, 0.18) to (0.23, 0.24), respectively. This indicates that the
relationship between EC and the pandemic is dynamic rather than

static. Although the coefficients were not high in the early stage of the
pandemic as the COVID-19 virus spread, EC can be viewed as another
metric of the pandemic.

Methods
COVID-19 incidence level calculation
The incidence is a measure of epidemiological spread rate, as given by
the following equation:

I =
C

P=100,000
ð1Þ

in which I is the incidence, C is the daily new confirmed cases, and P is
the population. The seven-day moving average is applied when
calculating C to eliminate the statistic’s fluctuation between weekdays
and weekends. The four levels of COVID-19 are defined as:39

I =

0, Low

1, 10½ Þ, Medium

10, 25½ Þ, High

25, +1½ Þ, Critical

8>>><
>>>:

ð2Þ

The populations of MSAs were aggregated from 2019 county
annual resident population estimates40. COVID-19 case data for each
MSA was aggregated from U.S. county COVID-19 case data41. The
incidence of COVID-19 on the metropolitan level was then calculated
by Eq. (1). During the 61 days from 1 April to 31 May 2020, the most
frequent incidence level was chosen as the metropolitan
incidence level.

Economic structure clustering analysis
GDPdata from 201942 is used to represent the pre-pandemic economic
structure, and the missing values of 2019 were filled in using the data
from 2015 to 2018. There are 35 lines of data in each MSA, with each
line accounting for a category. However, 20 categories listed in Sup-
plementary Table 4 were selected as the representative variables to
address the overlap in the source data.

In some cases, there are missing values introduced from part of
the data being hidden by the Bureau of Economic Analysis to avoid
disclosing confidential information, such as Agriculture/Forestry from
2018 to 2019 in Supplementary Table 4. To address themissing values,
the data were processed in four steps: (1) If the categories have valid
observations within the most recent four years (2015-2018), the miss-
ing values were filled in with the average value of the valid values; (2)
The GDP data of 2019 were scaled into percentage between 0 and 1
from quantity; (3) Regarding the categories that all five observations
are absent, they are filled with ð1� sÞ=n, where s is the sum of the non-
zero categories and n is the number of missing categories; and (4) The
scaled GDP data suffered from skewness to the right that can degrade
the further clustering analysis. Therefore, a fifth root transformation
was applied to alleviate the skewness issue. The data from Asheville,
NC is given in Supplementary Table 4 as a snapshot of the source and
preprocessed data.

Given the high dimensionality of the economic structure data,
k-means43 was used for clustering. More details can be found in Sup-
plementary Note 1. The distance metric used in this study is the
Euclidean distance, and the elbow method is used to determine the
number of clusters. Clustering analysis of economic structure, which
can be used to classify MSAs according to their economic character-
istics, will be used to further investigate the EC variation patterns in
this paper.

EC estimates
The estimates can be done in two steps which are described as follows.
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In the first step, we used GDP and population as indicators of total
and residential EC respectively. EC is categorized into four sectors:
residential, commercial, industrial, and transportation. This study
analyzed the variation of total EC, residential EC, and the proportion of
the residential sector. However, EC data on the metropolitan level is
not directly available. Therefore, estimates were constructed for
further study.

Metropolitan level EC, including total consumption and residen-
tial consumption, was estimated through EC data at the state level
from the U.S. Energy Information Administration (EIA). First, the total
and residential data on the state level were broken down into the
county level. Second,metropolitan level EC estimateswere aggregated
from the counties included in a given MSA.

Figure 6 shows the EC against GDP and population. Figure 6a
indicates that in 2019 in California, the county level total EC44 had a
linear relationship with the total GDP42. Figure 6b indicates that in the
secondquarter of 2020, the total EC45was linearly relatedwith the total
GDP46 at the state level in the continental US. Figure 6c shows that
residential EC has a linear relationship with the population of each
county in California in 2019. Figure 6d indicates that in the U.S., during
the second quarter of 2020, state level residential EC could be roughly
represented by the population of the year 202040. From Fig. 6b, d, it
can be observed that four states, namely Florida, Texas, New York, and

California, deviate from the linear regression line. Further, theGDP and
population rangeon the state level ismuchwider than the county level.
As a result, inaccuracy canbe introduced ifwe apply a linear regression
model built from state level data to estimate county-level EC. To
overcome thedrawbackmentioned above, a linearproportionalmodel
at the county level is applied for the following reasons. First, Fig. 6a (or
6c) indicates the linear relationship between total EC and GDP (or
between residential EC and population) on the county level in Cali-
fornia. Second, due to county-level data unavailability in other states,
the linear proportionalmodel with state-specific coefficients is applied
at the county level in each state, which is modeled by Eqs. 3 and 4.
Third, as such, the estimates on the county level within a state can
avoid the impacts from other states.

GDP, EC, and population are closely related to each other, and
both GDP and population can be an indicator of EC. As shown in
Supplementary Table 5, the population outperforms the GDP in the
ordinary least squares (OLS) regression analysis on the total/residen-
tial EC. However, given the widespread adoption of work-from-home
policies, it ismore prudent to useGDP and the intensity of information
technology to measure total EC. Additionally, it can be observed that
when both GDP and population are included in the model, the sign of
the GDP coefficient becomes negative, which is consistent with the
high degree of collinearity between GDP and population. The Pearson

Fig. 6 | EC relationship with GDP and population. a Total EC and total GDP of
each county in California in 2020. b Total EC and total GDP of each state in the U.S.
in 2020 Q2. c Residential EC and population estimates of each county in California
in 2020. d Residential EC in 2020 Q2 and population estimates for 2020 for each

state in the U.S. The error bars of a to d represent 95% confidence prediction limits.
Theunits of thex axesofa andb aremillionsofdollars, and theunits of the y axesof
a to d are GWh.
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correlation coefficient between GDP and population at the county
level in California and the state level are 0.9562 and 0.9753, respec-
tively. Thus, the GDP is used to estimate the total EC, whereas the
population is used to estimate the residential EC.

As a result, the county level total EC was estimated through the
county GDP share in the state, while the residential EC was estimated
based on the proportion of county population in the state. These are
given in Eqs. (3) and (4):

ECTc =
GDPc

GDPs
ECTs ð3Þ

in which ECTc is the total EC of a county, GDP2c is the annual GDP in
current dollars of the county, GDP2s is the annualized quarterly GDP in
current dollars of the according state, and ECTs is the total EC of the
corresponding state.

ECRc =
Pc

Ps
ECRs ð4Þ

in which ECRc is the residential EC of a county, Pc is the population
estimate of the county, Ps is the population estimate of the according
state, and ECRs is the residential EC of the corresponding state.

The estimates from April–May 2019 and April–May 2020 were
constructed. Then, the estimates of metropolitan EC could be aggre-
gated based on the county-level data:

ECTMSA,y =
P

ECTcounty,y

ECRMSA,y =
P

ECRcounty,y

(
ð5Þ

where y is the year, which can be either 2019 or 2020.
Therefore, the EC change after COVID-19 can be calculated as:

rECT =
ECTMSA,2020�ECTMSA,2019

ECTMSA,2019

rECR =
ECRMSA,2020�ECRMSA,2019

ECRMSA,2019

8<
: ð6Þ

In the second step, the GDP of 2020was estimated. The 2019 GDP
by county and 2019 Q2 to 2020 Q2 quarterly GDP by state were
released by theU.S. Bureauof Economic Analysis46. However, the 2020
GDP by county was calculated from annualized quarterly GDP growth
by state. It is assumed that GDP growth in April and May were con-
sistent with the growth in Q2.

First, the base of the county GDP growth was measured by the
chain-type quantity indexes for real GDP (inflation-adjusted) by state,
as shown in (7),

ρ0
c ,2020 =

GDP8s ,2020Q2

GDP8s ,2019Q2

ð7Þ

in which the ρ0
c,2020 is the base GDP growth rate of a county in 2020,

and GDP8s,2020Q2 and GDP8s,2019Q2 are the annualized quarterly GDP
chain-type quantity indexes for real GDP by the state in 2020 Q2 and
2019 Q2, respectively. Second, the GDP growth rate of each county
was adjusted by the information technology intensity based on the
assumption that the production of industries after COVID-19 was
proportional to their intensity of information technology and that
part of each county’s workforce could work from home47. The
information technology intensity for each industry is shown in
Supplementary Fig. 1. We imposed a discount factor on the GDP
growth rate caused by the non-information industries as shown
in (8):

ρ
adj
c ,2020 =

2
12

1� TMSA

� �
� 1� �TMSA

� �h i
ð8Þ

in which ρadj
c,2020 is the penalty coefficient of the county, TMSA is the

information technology intensity gain of the corresponding MSA as
shown in (9), and �TMSA is the mean value of TMSA.

TMSA =
X20
k= 1

dkGDP2k,MSA
GDP2MSA

ð9Þ

Fig. 7 | Data processing and computation flow. Green boxes denote the source
data, yellow boxes denote preprocessed data, and orange boxes denote the
computed results. The source data can be found in the reference, and a copy of

the raw source data and computation results can be found in the Data availability
section.
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where dk is the percentage of digital workers by industry47, GDP2k,MSA

is the GDP in current dollars by industry of the MSA, and GDP2MSA is
the total GDP in current dollars of the MSA.

Finally, the 2020 GDP by county was calculated by the 2019 GDP
and 2020 growth rate as:

GDP2c ,2020 = ρ0
c ,2020 � ρ

adj
c ,2020

� �
GDP2c ,2019 ð10Þ

where GDP2c,2020 is the county GDP in 2020, and GDP2c,2019 is the
county GDP in 2019.

Data processing and computation
The data processing and computation flow is depicted in Fig. 7,
where MSA stands for metropolitan statistical area, CTY for county,
and STA for state. The green boxes denote the source data, which
include COVID-19 data at the county level; GDP data at the county,
metropolitan, and state levels; population data at the county,
metropolitan, and state levels; EC data at the state level; and data on
information technology intensity in the U.S. Yellow boxes denote
preprocessed data, which includes COVID-19 and economic structure
data at the metropolitan level, where missing value filling and data
transformation are applied. Orange boxes denote the computed
results, which include the level of incidence at themetropolitan level,
metropolitan clusters, and EC and its variation at the metropolitan
level. The source data were obtained in CSV format. Then the data
were preprocessed (i.e., cleaned, aggregated, and transformed) and
computed by NumPy48 and pandas49. The clustering analysis and
other statistical analysis were performed with Scikit-learn50 and
SciPy51. All the tools mentioned above are open-source and can be
accessed by the public.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The EC, economic structure, COVID data of MSAs generated in this
study, and a copy of the raw data have been deposited in the figshare
database at https://doi.org/10.6084/m9.figshare.20493345.v2. All the
raw data can be accessed by the public at the referenced link.

Code availability
All codes used in this research are available from the author upon
request.
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