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Abstract: In this work, we present a three-stage multiobjective mixed-integer linear programming
(MILP) for the optimal expansion planning and operation of isolated multienergy microgrids in
remote areas. By selecting the optimal distributed generators (DGs) and energy storage systems
(ESSs) mix selection, siting, sizing, and scheduling in the remote microgrid, the proposed model is
targeted to minimize the annualized total cost of microgrids while enhancing the performance of
the system, i.e., minimizing the voltage deviations and line power loss. To represent the electricity
and heat flow between generation resources and various electrical, heating, and cooling loads in the
isolated microgrid, linearized power flow, and heat flow constraints are employed in the proposed
optimization model. The available capacity of DGs and ESSs are modeled as discrete constants
instead of continuous variables for practical purpose. Numerical simulation results on a remote
microgrid consisting of DGs, ESSs, and various loads validate the proposed method.

Keywords: microgrid; planning and operation; siting and sizing; mixed-integer linear programming
(MILP)

1. Introduction

A microgrid is a low-voltage energy system with distributed generators (DGs) and
energy storage systems (ESSs) that are colocated with electrical and thermal loads. It is usu-
ally grid-connected through the Point of Common Coupling (PCC) but could automatically
transform from grid-connected operation into islanded operation, in which a microgrid
can continue to provide energy supply to its customers without any interruption in case of
utility grid failures [1]. By virtue of its defining characteristics, microgrids introduce many
unique opportunities, including improving the energy efficiency and reliability, facilitat-
ing renewable generation integration, reducing carbon emissions, delaying investment in
distribution grid upgrades, and providing ancillary services, e.g., voltage and frequency
regulation [2–5]. For these benefits, the number of microgrids deployed by utilities and
customers has been growing rapidly in the last several years [6].

The remote segment (rural, remote, and islanded communities) has been leading
the ever-increasing microgrid market, claiming the largest segment of overall microgrids
worldwide with a share of 36% of the total market according to data released in a 2020
study [7]. The driving force of the prosperity of remote microgrids comes from different
aspects of the market. Compared with traditional construction/upgrades of electrical
network infrastructures requiring high investment and long commissioning timelines,
deployment of microgrids is becoming favorable because of the increasingly lower cost
of DGs and ESSs, no additional transmission/distribution line corridor needs, shorter
construction cycles, and the ease of extending and upgrading. Microgrids enable an option
for achieving cost-effective and reliable electricity supply for remote communities in a clean
and sustainable way. Nevertheless, there are still challenges standing in almost every stage
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of the microgrid adoption process, such as complexity to determine a site-specific optimal
microgrid design that meets both economic and operational constraints.

There have been many existing literatures on optimization methods and algorithms
for microgrid planning problem [8,9]. Generally, the microgrid planning problem could be
formulated as a two-stage optimization, where the sizing and siting of DGs and ESSs are de-
cided in the first-stage and the economic dispatch of installed DGs and ESSs are performed
in the second-stage. In [10], wind turbine, diesel generator, and ESSs are optimally-sized
for a remote microgrid. The objective is minimizing the energy cost and emissions. The
problem is formulated as mixed-integer linear programming (MILP). Due to the fact that the
power generation of renewable energy resources are highly variable, two-stage stochastic
optimization models are more commonly proposed to take into account uncertainty of
renewable generation, load variation and outages of DGs, etc., [11–13]. In [14], the design
of microgrids is formulated as two-stage stochastic programming. The stochastic two-stage
model is extended to minimize risk in the investment by modifying the objective function as
Markovitz (mean-variance) objective function in [15]. The stochastic microgrid expansion
planning problem is extended to consider the participation of microgrids in electricity
markets in [16,17]. Considering the stochastic grid disturbances, renewable generation,
and component outages, two-stage stochastic MILP models are proposed to determine the
optimal sizing of DGs and ESSs to meet the specified resilience/reliability goals in [18,19].
Nevertheless, the formulation of stochastic optimization needs probability distribution of
renewable generation, which might be difficult to obtain in reality.

Robust optimization ignores the probability distribution of stochastic variables, and
makes the decision only based on the upper and lower bounds of them. Thus, robust
optimization has gained increasing popularity recently. In [20], the microgrid planning is
formulated as a two-stage robust optimization and solved using the column and constraint
generation (C&CG) algorithm. In [21], the optimal planning of provisional microgrids
is defined and formulated as robust optimization. In [22], renewable generation and
load are modeled through Wasserstein metric-based ambiguity sets. Then, the optimal
planning of microgrids is formulated as a data-driven two-stage robust optimization.
Combining stochastic optimization and robust optimization, a hybrid stochastic-robust
optimization model is proposed for resilient microgrid planning in [23]. Note that two-
stage robust optimization models require the inner-level optimization to be linear, so
that it could be equivalently transformed into its dual problem, then C&CG or benders’
decomposition algorithms could be utilized to solve the optimization efficiently. As a result,
the commitment status and minimum output of dispatchable DGs have been ignored.

Some of these classic stochastic and robust methods have been implemented by soft-
ware tools. HOMER creates a list of feasible configurations based on alternative time-series
simulations, then selects the best plan economically and environmentally [24]. DER-CAM
software is focusing on building microgrid technology selection and operation [25]. Be-
sides classic mathematical programming methods, metaheuristic methods have also been
widely used for solving the microgrid planning and expansion problem due to the capa-
bility to deal with non-convex constraints and objectives. These metaheuristic methods
includes genetic algorithm (GA) [26,27], particle swarm optimization (PSO) [28,29], simu-
lated annealing (SA) method [30,31], harmony search algorithm (HSA) [32], grasshopper
optimization algorithm (GOA) [33], grey wolf algorithm (GWA) [34], whale optimization
algorithm (WOA) [35], etc. Nevertheless, the optimality of solution cannot be guaranteed
by metaheuristic methods.

Considering electricity, heating, and cooling demand, a multiobjective optimization is
proposed for the optimal expansion planning and operation of isolated microgrids. The
proposed model minimize the annualized investment and operation costs of microgrids;
at the same time, it enhances the performance of the system, i.e., minimizing the voltage
deviations and line power loss by selecting the optimal DGs and ESSs mix selection, siting,
sizing, and scheduling in remote microgrids. Considering the commitment status and
minimum output of dispatchable DGs, especially legacy diesel generation sets, the proposed
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microgrid expansion planning model is formulated as three-stage MILP. Linearized power
flow and heat flow equations are employed in the proposed optimization as constraints to
explicitly model the energy flow. The main contributions of this paper are as follows:

• A three-stage MILP is proposed for optimal expansion planning and operation of
isolated multienergy microgrids considering legacy DGs and ESSs.

• For practical purpose, the available capacity of DGs (except PV) and ESSs is modeled
as discrete constants instead of continuous variables. In addition, the commitment
status and minimum output of dispatchable DGs are explicitly modeled.

• To represent the electricity and heat flow between generation resources and various
electrical, heating and cooling loads in the isolated microgrid, linearized power flow
and heat flow constraints are employed in the proposed optimization model.

This paper is structured as follows: microgrid components and the proposed three-
stage MILP for optimal expansion planning and operation of isolated multienergy micro-
grids are presented in Section 2. Numerical simulation results and analysis are presented
in Section 3. Conclusions are drawn in Section 4.

2. Mathematical Formulations
2.1. Microgrid Components

Traditionally, microgrids in remote areas are designed based on diesel generators,
which are subject to expensive cost, low efficiency, heavy emissions, and huge fluctuations
of petroleum price. Currently, DGs, e.g., gas turbines, fuel cells, and their combined heat
and power (CHP) applications, are more attractive options due to their increasing lower
cost, little pollutants, and less maintenance, etc. Renewable DGs, e.g., wind turbine and PV,
are even gaining unprecedented popularity due to the unique characteristic of little to no
greenhouse gas emissions. However, wind and PV generation are affected by the changing
weather conditions. As a result, they could only be forecasted with limited accuracy. The
hour-ahead forecast error of wind power output could be achieved below 10% [36,37].
As for PV power, it is even more volatile due to changing cloud coverage and ambient
temperature [38,39]. To mitigate these intermittency and uncertainties, ESSs are usually
equipped on-site.

In this paper, it is assumed that the available options of invested technologies include
gas turbine, gas turbine CHP, fuel cell, fuel cell CHP, PV, and ESS. For each technology, there
are a variety of selections with different characteristics (such as capacity, size, efficiency,
etc.). PV capacity is taken as continuous variables limited by available spaces. For gas
turbine, gas turbine CHP, fuel cell, fuel cell CHP, and ESS, there are only a limited number
of capacities available based on existing commercial products. Thus, a binary variable is
created for each candidate component with specific capacity. Without loss of generality,
wind turbines are not taken as available investment options in this work due to concerns
existing over noise pollution and threats to the wildlife. In addition, it is assumed that the
electricity and heating distribution network has already been installed, thus only planning
of DGs and ESSs is considered in this work.

2.2. Objective Function

The problem of optimal expansion planning and operation of isolated multienergy
microgrids in remote areas is formulated as a three-stage MILP model. By selecting the
optimal DGs and ESSs mix selection, siting, sizing, and scheduling in the remote microgrid,
the proposed model is targeted to minimize the annualized investment and operation costs
of microgrids; at the same time, it enhances the performance of the system, i.e., minimizing
the voltage deviations and line power loss, as shown in (1). The multiple objectives are
integrated into a single objective function by weighted summation. WC, WV and WL are
weighting factors of system investment and operation cost, voltage deviations, and line
power losses, respectively. For simplicity, WC, WV and WL are all set to be 1 in this paper.
An analytical hierarchy process (AHP) was proposed to help setting weighting factors
based on pairwise comparison of the importance of any two objectives [40]. The basic idea
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of this work is to determine whether by adding certain new DGs and ESSs in an existing
microgrid, we could reduce the annualized overall cost of the microgrid, i.e., improve the
energy economy.

min WC

(
IC + OC + OCEX

)
+ WVVD + WLLOSS (1)

The annualized investment cost is shown in (2), which includes PV, gas turbine, gas
turbine CHP, fuel cell, fuel cell CHP, and ESS. The PV capacity are modeled as continuous
variables, while other DGs are modeled with binary variables. Take fuel cell, for example,
UFC

nji is a binary variable indicating whether fuel cell i of size selection j is invested at

bus n or not. The term r(1+r)
lFC
j

(1+r)
lFC
j −1

is an annuity factor that equally distributes the overall

investment cost into lFC
j years, where lFC

j is the lifetime of the fuel cell.

IC =
NN

∑
n=1

NPV

∑
i=1

r(1 + r)lPV
i

(1 + r)lPV
i − 1

CPV
i CapPV

ni

+
NN

∑
n=1

NFC

∑
j=1

NFCj

∑
i=1

r(1 + r)lFC
j

(1 + r)lFC
j − 1

CFC
j CapFC

j UFC
nji

+
NN

∑
n=1

NFCC

∑
j=1

NFCCj

∑
i=1

r(1 + r)lFCC
j

(1 + r)lFCC
j − 1

CFCC
j CapFCC

j UFCC
nji (2)

+
NN

∑
n=1

NGT

∑
j=1

NGTj

∑
i=1

r(1 + r)lGT
j

(1 + r)lGT
j − 1

CGT
j CapGT

j UGT
nji

+
NN

∑
n=1

NGTC

∑
j=1

NGTCj

∑
i=1

r(1 + r)lGTC
j

(1 + r)lGTC
j − 1

CGTC
j CapGTC

j UGTC
nji

+
NN

∑
n=1

NBT

∑
j=1

NBTj

∑
i=1

+
r(1 + r)lBT

j

(1 + r)lBT
j − 1

CBT
j UBT

nji

The annualized operating cost includes that of new invested DGs and ESS as shown
in (4), as well as legacy DGs and ESSs as shown in (5). For new invested DGs and ESSs, the
operating cost includes fixed O&M cost, fuel cost of DGs, and degradation cost of ESSs as
in (4). For legacy DGs and ESSs, the operating cost includes fuel cost of DGs, degradation
cost of ESSs, and cost of natural gas burned for direct heating as in (5).

Note that the operating costs of DGs are assumed piecewise linear, which has been
widely used in existing literatures [41,42], commercial microgrid planning and operation
tools [43], and real electricity markets [44,45]. As to ESSs, detailed ESS degradation is a
complex process affected by many factors (e.g., temperature, depth of discharge, charg-
ing/discharging rate, type and manufacture of ESS, etc.) [46]. Nevertheless, the ESS
degradation cost can be approximately formulated as a linear function of the charged and
discharged energy [47,48].

OC =
NN

∑
n=1

NPV

∑
i=1

COMPV
i CapPV

ni

+
NN

∑
n=1

NFC

∑
j=1

NFCj

∑
i=1

{
COMFC

j CapFC
j UFC

nji +
NT

∑
t=1

[
NI

∑
m=1

λFC
j (m)pFC

njit(m) + κFC
j uFC

njit

]}

+
NN

∑
n=1

NFCC

∑
j=1

NFCCj

∑
i=1

{
COMFCC

j CapFCC
j UFCC

nji +
NT

∑
t=1

[
NI

∑
m=1

λFCC
j (m)pFCC

njit (m) + κFCC
j uFCC

njit

]}
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+
NN

∑
n=1

NGT

∑
j=1

NGTj

∑
i=1

{
COMGT

j CapGT
j UGT

nji +
NT

∑
t=1

[
NI

∑
m=1

λGT
j (m)pGT

njit(m) + κGT
j uGT

njit

]}
(3)

+
NN

∑
n=1

NGTC

∑
j=1

NGTCj

∑
i=1

{
COMGTC

j CapGTC
j UGTC

nji +
NT

∑
t=1

[
NI

∑
m=1

λGTC
j (m)pGTC

njit (m) + κGTC
j uGTC

njit

]}

+
NN

∑
n=1

NBT

∑
j=1

NBTj

∑
i=1

[
COMBT

j UBT
nji +

NT

∑
t=1

(
λch

j pch
njit + λdch

j pdch
njit

)]

OCEX =
NDGEX

∑
i=1

NT

∑
t=1

[
NI

∑
m=1

λDGEX
i (m)pDGEX

it (m) + κDGEX
i uDGEX

it

]

+
NFCEX

∑
i=1

NT

∑
t=1

[
NI

∑
m=1

λFCEX
i (m)pFCEX

it (m) + κFCEX
i uFCEX

it

]

+
NFCCEX

∑
i=1

NT

∑
t=1

[
NI

∑
m=1

λFCCEX
i (m)pFCCEX

it (m) + κFCCEX
i uFCCEX

it

]

+
NGTEX

∑
i=1

NT

∑
t=1

[
NI

∑
m=1

λGTEX
i (m)pGTEX

it (m) + κGTEX
i uGTEX

it

]
(4)

+
NGTCEX

∑
i=1

NT

∑
t=1

[
NI

∑
m=1

λGTC
i (m)pGTCEX

it (m) + κGTCEX
i uGTCEX

it

]

+
NBTEX

∑
i=1

NT

∑
t=1

(
λchEX

i pchEX
it + λdchEX

i pdchEX
it

)
+

NN

∑
n=1

NT

∑
t=1

λG
ntGnt

The system total voltage deviations and line power losses are shown in (5) and (6),
which will be linearized in the following subsection.

VD =
NT

∑
t=1

NN

∑
n=1

V2
nt − (Vmax

thr )2 : (Vnt > Vmax
thr ) +

NT

∑
t=1

NN

∑
n=1

(
Vmin

thr

)2
−V2

nt : (Vnt < Vmin
thr ) (5)

LOSS =
NC

∑
f=1

NT

∑
t=1

r f

(
P2

f t + Q2
f t

)
(6)

The proposed model for optimal expansion planning and operation of isolated multi-
energy microgrids is a three-stage MILP model. In the first stage, the investment decisions
of distributed generators (DGs) and energy storage systems (ESSs) are determined through
optimizing the binary variables UFC

nji , UFCC
nji , UGT

nji , UGTC
nji , UBT

nji , and continuous variable

CapPV
ni . Note these variables are associated with each bus n, each selection j for a tech-

nology and each candidate unit number i for technology selection j, i.e., these first-stage
variables determine the DGs and ESSs mix selection, siting, and sizing. In the second stage,
the commitment status of dispatchable DGs and charging/discharging status of ESSs are
solved. In the third stage, the dispatching decisions of DGs and ESSs are decided, i.e., the
scheduling of new invested and existing DGs and ESSs are determined through optimizing
the second-stage and third-stage variables.
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2.3. Constraints

The objective is subject to constraints associated with each component and other
system operation limits, such as power balance, heating balance, cooling balance, voltage
limits, and power/heat flow limits.

2.3.1. PV Constraints

NPV

∑
i=1

CapPV
ni SPV

i ≤ ∆max
n ∀n (7)

PPV
nit = CapPV

ni
Gt

GSTC
[1 + k(Tc − Tr)] (8)

The maximum invested PV capacity is limited by the available area at each bus as
in (7). A maximum power point tracker is assumed, and the maximum power output of PV
is represented as a linear function of invested PV capacity as in (8) [49].

2.3.2. Fuel Cell Constraints

PFC
njit =

NI

∑
m=1

pFC
njit(m) + uFC

njitP
FC,min
j ∀n, ∀j, ∀i, ∀t (9)

0 ≤ pFC
njit(m) ≤ pFC,max

njit (m) ∀n, ∀j, ∀i, ∀t, ∀m (10)

uFC
njit ≤ UFC

nji ∀n, ∀j, ∀i, ∀t (11)

PFC,min
j uFC

njit ≤ PFC
njit ≤ PFC,max

j uFC
njit ∀n, ∀j, ∀i, ∀t (12)

− tan
(

cos−1
(

PFFC,min
j

))
PFC

njit ≤ QFC
njit ≤ tan

(
cos−1

(
PFFC,max

j

))
PFC

njit (13)(
PFC

njit

)2
+
(

QFC
njit

)2
≤
(

SFC
j

)2
∀n, ∀j, ∀i, ∀t (14)

The fuel cost of fuel cell is approximated by blocks through constraints (9) and (10).
Constraint (11) enforces the output of fuel cell to be zero if not invested. The minimum and
maximum output of fuel cell is enforced by (12). The power factor and capacity limit is
ensured by (13) and (14).

2.3.3. Fuel Cell CHP Constraints

PFCC
njit =

NI

∑
m=1

pFCC
njit (m) + uFCC

njit PFCC,min
j ∀n, ∀j, ∀i, ∀t (15)

0 ≤ pFCC
njit (m) ≤ pFCC,max

njit (m) ∀n, ∀j, ∀i, ∀t, ∀m (16)

uFCC
njit ≤ UFCC

nji ∀n, ∀j, ∀i, ∀t (17)

PFCC,min
j uFCC

njit ≤ PFCC
njit ≤ PFCC,max

j uFCC
njit ∀n, ∀j, ∀i, ∀t (18)

− tan
(

cos−1
(

PFFCC,min
j

))
PFCC

njit ≤ QFCC
njit ≤ tan

(
cos−1

(
PFFCC,max

j

))
PFCC

njit (19)(
PFCC

njit

)2
+
(

QFCC
njit

)2
≤
(

SFCC
j

)2
∀n, ∀j, ∀i, ∀t (20)

0 ≤ HFCC
njit ≤ HPRFCC

j PFCC
njit ∀n, ∀j, ∀i, ∀t (21)

The fuel cost of fuel cell CHP is approximated by blocks through constraints (15)
and (16). Constraint (17) enforces the output of fuel cell CHP to be zero if not invested. The
minimum and maximum output of fuel cell CHP is enforced by (18). The power factor and
capacity limit are ensured by (19) and (20). The heating output of fuel cell CHP is limited
by the heating to power ratio (HPR) as in (21).
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2.3.4. Gas Turbine Constraints

PGT
njit =

NI

∑
m=1

pGT
njit(m) + uGT

njitP
GT,min
j ∀n, ∀j, ∀i, ∀t (22)

0 ≤ pGT
njit(m) ≤ pGT,max

njit (m) ∀n, ∀j, ∀i, ∀t, ∀m (23)

uGT
njit ≤ UGT

nji ∀n, ∀j, ∀i, ∀t (24)

PGT,min
j uGT

njit ≤ PGT
njit ≤ PGT,max

j uGT
njit ∀n, ∀j, ∀i, ∀t (25)

− tan
(

cos−1
(

PFFC,min
j

))
PGT

njit ≤ QGT
njit ≤ tan

(
cos−1

(
PFGT,max

j

))
PGT

njit (26)(
PGT

njit

)2
+
(

QGT
njit

)2
≤
(

SGT
j

)2
∀n, ∀j, ∀i, ∀t (27)

The fuel cost of gas turbine is approximated by blocks through constraints (22) and (23).
Constraint (24) enforces the output of gas turbine to be zero if not invested. The minimum
and maximum output of gas turbine is enforced by (25). The power factor and capacity
limit is ensured by (26) and (27).

2.3.5. Gas Turbine CHP Constraints

PGTC
njit =

NI

∑
m=1

pGTC
njit (m) + uGTC

njit PGTC,min
j ∀n, ∀j, ∀i, ∀t (28)

0 ≤ pGTC
njit (m) ≤ pGTC,max

njit (m) ∀n, ∀j, ∀i, ∀t, ∀m (29)

uGTC
njit ≤ UGTC

nji ∀n, ∀j, ∀i, ∀t (30)

PGTC,min
j uGTC

njit ≤ PGTC
njit ≤ PGTC,max

j uGTC
njit ∀n, ∀j, ∀i, ∀t (31)

− tan
(

cos−1
(

PFGTC,min
j

))
PGTC

njit ≤ QGTC
njit ≤ tan

(
cos−1

(
PFGTC,max

j

))
PGTC

njit (32)(
PGTC

njit

)2
+
(

QGTC
njit

)2
≤
(

SGTC
j

)2
∀n, ∀j, ∀i, ∀t (33)

0 ≤ HGTC
njit ≤ HPRGTC

j PGTC
njit ∀n, ∀j, ∀i, ∀t (34)

The fuel cost of fuel cell CHP is approximated by blocks through constraints (28)
and (29). Constraint (30) enforces the output of fuel cell CHP to be zero if not invested. The
minimum and maximum output of fuel cell CHP is enforced by (31). The power factor and
capacity limit is ensured by (32) and (33). The heating output of gas turbine CHP is limited
by the heating to power ratio (HPR) as in (34).

2.3.6. ESS Constraints

0 ≤ Pch
njit ≤ Pch,max

j uC
njit ∀n, ∀j, ∀i, ∀t (35)

0 ≤ Pdch
njit ≤ Pdch,max

j uD
njit ∀n, ∀j, ∀i, ∀t (36)

uC
njit + uD

njit ≤ 1 ∀n, ∀j, ∀i, ∀t (37)

uC
njit ≤ UBT

nji ∀n, ∀j, ∀i, ∀t (38)

uD
njit ≤ UBT

nji ∀n, ∀j, ∀i, ∀t (39)

SOCBT
njit = SOCBT

nji,t−1 + Pch
njitη

C
j 4t− Pdch

njit
1

ηC
j
4t ∀n, ∀j, ∀i, ∀t (40)
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SOCBT,min
j ≤ SOCnjit ≤ SOCBT,max

j ∀n, ∀j, ∀i, ∀t (41)

−tan
(

cos−1
(

PFBT,C,min
j

))
Pch

njit ≤ QBT
njit ≤ tan

(
cos−1

(
PFBT,C,max

j

))
Pch

njit

i f : Pch
njit > 0 ∀n, ∀j, ∀i, ∀t (42)

−tan
(

cos−1
(

PFBT,D,min
j

))
Pdch

njit ≤ QBT
njit ≤ tan

(
cos−1

(
PFBT,D,max

j

))
Pdch

njit

i f : Pdch
njit > 0 ∀n, ∀j, ∀i, ∀t (43)

(
Pdch

njit − Pch
njit

)2
+
(

QBT
njit

)2
≤
(

SBT
j

)2
∀n, ∀j, ∀i, ∀t (44)

The maximum charging/discharging power of an ESS is constrained by (35) and (36).
These two states are mutually exclusive; this is ensured by (37). The ESS cannot charge
or discharge any power when it is not invested. This constraint is represented by (38)
and (39).The minimum and maximum state of charge (SOC) are specified in (40) and (41).
The power factor limits of an ESS are represented in (42) and (43). The capacity of an ESS
is enforced by (44). The logical terms in constraints (42) and (43) are reformulated into
mixed-integer linear (MIL) form, as (45)–(48).

− SBT
j uD

njit − tan
(

cos−1
(

PFBT,C,min
j

))
Pch

njit ≤ QBT
njit∀n, ∀j, ∀i, ∀t (45)

QBT
njit ≤ tan

(
cos−1

(
PFBT,C,max

j

))
Pch

njit + SBT
j uD

njit∀n, ∀j, ∀i, ∀t (46)

− SBT
j uC

njit − tan
(

cos−1
(

PFBT,D,min
j

))
Pdch

njit ≤ QBT
njit∀n, ∀j, ∀i, ∀t (47)

QBT
njit ≤ tan

(
cos−1

(
PFBT,D,max

j

))
Pdch

njit + SBT
j uC

njit∀n, ∀j, ∀i, ∀t (48)

2.3.7. Network Constraints

Equations (49)–(53) are the linear DistFlow model (LinDistFlow), which was first
proposed in [50]. The LinDistFlow model is one of the most widely used linear power
flow models for distribution system analysis due to its ability to yield accurate voltage
magnitude estimations under radial topology and high r/x ratio [51–53]. For the accuracy
of the LinDistFlow model, we refer readers to [54], which validated the LinDistFlow model
on different IEEE test feeders. The bus voltage drop is specified in (49). The real and
reactive power are balanced across the network, which are ensured by (50) and (51), where
AInc is the nodal incidence matrix of the electricity distribution network. The bus voltages
are limited by (52). The feeder capacity is enforced by (53). Note that the square of
nodal voltages in (49) and (52) are directly taken as variables. Thus, these two constraints
are linear.

V2
nt = V2

n+1,t + 2
(

r f Pf t + x f Q f t

)
∀ f , ∀ t (49)

AIncPf = AInc
PVPPV + AInc

FC PFC + AInc
FCCPFCC + AInc

GTPGT

+AInc
GTCPGTC + AInc

BT

(
Pdch − Pch

)
+ AInc

PVEX
PPVEX

+AInc
DGEX

PDGEX + AInc
FCEX

PFCEX + AInc
FCCEX

PFCCEX (50)

+AInc
GTEX

PGTEX + AInc
GTCPGTCEX + AInc

BTEX

(
PdchEX − PchEX

)
−AInc

L

(
PL + PH + PC

)
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AIncQf = AInc
FC QFC + AInc

FCCQFCC + AInc
GTQGT + AInc

GTCQGTC

+AInc
BT QBT + AInc

DGEX
QDGEX + AInc

FCEX
QFCEX (51)

+AInc
FCCEX

QFCCEX + AInc
GTEX

QGTEX + AInc
GTCQGTCEX

+AInc
BTEX

QBTEX − AInc
L QL

(
Vmin

)2
≤ V2

nt ≤ (Vmax)2 ∀ n, ∀ t (52)

P2
f t + Q2

f t ≤ S2
f ∀ f , ∀t (53)

Similarly, the heating balances across the heating distribution network are represented
by (54), where BInc is the nodal incidence matrix of the heating distribution network. The
heating and cooling loads are satisfied by (55) and (56). For a system without heating
distribution network, we simply need to enforce Hf = 0.

BIncHf =
(

BInc
FCCHFCC + BInc

GTCHGTC + BInc
FCCEX

HFCCEX + BInc
GTCHGTC

)
βR

−BInc
L GβG − BInc

L

(
HH + HC

)
(54)

HH
nt + δH PH

nt ≥ LH
nt (55)

γC HC
nt + δCPC

nt ≥ LC
nt (56)

The energy flow diagram is shown in Figure 1. In particular, we consider the heating
and cooling demand into the optimization model. The heating demand must be satisfied
by electricity power heat pump or recovered heat from CHP and fuel burner. Meanwhile,
the cooling demand must be satisfied by electricity power heat pump or absorption chiller,
which utilizes recovered heat from CHP and fuel burner.

Figure 1. Energy flow diagram of remote multienergy microgrids.

2.3.8. Simplification and Linearization

To reformulate the proposed planning model for isolated multienergy microgrids in
remote areas into MILP, all nonlinear terms in the objective function and constraints have to
be reformulated or linearized into MIL form. In the objective function, the logic expression
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of voltage deviation in (5) could be reformulated into linear format as (57)–(59), where XV
nt

is the absolute voltage deviation.

XV
nt ≥ V2

nt − (Vmax
thr )2 ∀ n, ∀ t (57)

XV
nt ≥

(
Vmin

thr

)2
−V2

nt ∀ n, ∀ t (58)

XV
nt ≥ 0 ∀ n, ∀ t (59)

The quadratic terms in the total line losses in equation (6) can be estimated by piece-
wise linearization [55]. The same linearization can be performed for quadratic capacity
constraints (14), (20), (27), (33), and (44).

Finally, all nonlinear constraints have been equivalently transformed into MIL form.
As a result, the proposed microgrid planning model is now a MILP, which could be solved
by open-source MILP solvers (e.g., Coin-OR CBC) or commercial MILP solvers efficiently.

A workflow diagram of the proposed optimal expansion planning and operation
for isolated multienergy microgrids is shown in Figure 2. As can be seen, the economic
characteristic, component characteristics, system data, and investment options are the input
data. Based on these data, the problem of optimal expansion planning and operation of
isolated multienergy microgrids is formulated as a three-stage MILP model considering
both power flow and heat flow constraints. The formulated model is solved by commercial
or free MILP solvers. Finally, the optimal design and corresponding results are obtained.

Figure 2. Workflow diagram of the proposed optimal expansion planning and operation for isolated
multienergy microgrids.

3. Case Studies
3.1. Test System

The proposed model for microgrid expansion planning and operation was demon-
strated using a modified Oak Ridge National Laboratory (ORNL) Distributed Energy
Control and Communication (DECC) microgrid test system [56]. The test system includes
5 buses, 4 dispatchable DGs, 2 groups of PV panels, a battery, and 3 multienergy loads, as
shown in Figure 3.

The parameters of dispatchable DGs can be found in [57]. The parameters of the
existing battery are listed in Table 1.
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Table 1. Existing Battery parameters.

Battery Type Power
Capacity (kW)

Energy
Capacity (kWh) SOCmax (%) SOCmin (%)

Lithium-ion 50 100 95 25

Degradation
Cost ($/kWh)

Charging
Efficiency (%)

Discharging
Efficiency (%)

Initial SOC
(%) End SOC (%)

0.02 0.95 0.95 50 50

The microgrid has 13.4 kW roof top PV installed on bus 1 and another 50 kW PV
installed on bus 2. The measured 1-min solar irradiance and temperature of Oak Ridge,
Tennessee area in 2015 is used [58]. To reduce the computational burden, each month is
simplified as one day; thus, only 12 days are used and the operating costs are scaled to
one year.

Figure 3. Modified ORNL DECC microgrid system.
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Three multienergy loads are located on Bus 1, 2, and 5, respectively. The system peak
electricity load is around 150 kW. The system peak heating load is around 100 kW, and the
system peak cooling load is around 70 kW. The daily load profiles of the three multienergy
loads are shown in Figure 4.

Figure 4. Multi-energy demand profiles.

There are two PV investment options: PV ground and PV roof. The initial capacity
costs are 2548 and 2275 $/kW, separately. Both of them have life expectancy of 25 years.
The parameters of the gas turbine and fuel cell investment options are listed in Table 2.
The parameters of the gas turbine CHP and fuel cell CHP investment options are listed in
Table 3. The parameters of the ESS investment options are listed in Table 4.

Table 2. Parameters of gas turbine and fuel cell investment options.

Technology Capacity
(kW)

Initial Capital
Cost ($/kW)

O&M Cost
($/kW)

Minimum
Output (kW)

Life Expectancy
(Years)

No. of
Candidate Units

Gas Turbine

125 660 0.013 37.5 20 5

130 846 0.013 38.4 20 5

760 900 0.013 228.6 20 5

Fuel Cell
210 6900 0.025 61 3 5

262 6900 0.025 78.6 3 5
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Table 3. Parameters of gas turbine CHP and fuel cell CHP investment options.

Technology Capacity
(kW)

Initial
Capital Cost

($/kW)

O&M Cost
($/kW)

Minimum
Power

Output (kW)

Heat to
Power Ratio

Life
Expectancy

(Years)

No. of
Candidate

Units

Gas Turbine CHP

5 5185 0.013 1.5 2.00 20 5

35 1814 0.013 10.5 1.71 20 5

65 3840 0.013 19.5 1.72 10 5

130 1846 0.013 38.4 1.67 10 5

760 1440 0.013 228.6 0.54 20 5

Fuel Cell CHP

300 3500 0.025 90 0.47 5 5

440 4500 0.025 132 0.51 5 5

1400 3900 0.025 420 0.46 5 5

2800 4000 0.025 900 0.46 5 5

Table 4. Parameters of the ESS investment options.

Rated
Energy
(kWh)

Rated
Power
(kW)

Initial
Capital
Cost ($)

O&M Cost
($/year)

Minimum
SOC (%)

Maximum
SOC (%)

Round Trip
Efficiency

(%)

Life
Expectancy

(Years)

No. of
Candidate

Units

6.4 3.3 2730 1 25 95 0.92 10 5

30 15 21,000 120 25 95 0.94 10 5

70 30 191,730 5750 25 95 0.64 20 5

100 30 273,900 8220 25 95 0.64 20 5

400 200 800,100 24,000 25 95 0.65 20 5

Other constraint limits used in the case studies are listed in Table 5. Note that the
number of energy blocks offered by DGs is assumed 3, i.e., NI = 3.

Table 5. Constraint limits used in the case studies.

Constraint Minimum Value Maximum Value

Invested PV Capacity (kW) 0 1000

Bus Voltage (p.u.) 0.95 1.05

Feeder Power Flow (kW) −1500 1500

Power Factor of Gas turbine and Fuel cell −0.5 0.5

Power Factor of Gas turbine CHP and Fuel cell CHP −0.5 0.5

Power Factor of ESS −0.5 0.5

Scheduled Power of m-th Block of Energy Offer by
DGs 0 Pmax−Pmin

NI

Bus 1 voltage is set as 1.02 p.u. The analysis is conducted for a year with hourly time
intervals. Each month is simplified as one day. So, only 12 days are considered in the
optimization. The optimization model is programmed in MATLAB and solved by CPLEX
12.6 [59]. With a duality gap of 1%, the solution time of one case scatters from several
minutes to several hours on a 2.66 GHz Windows-based PC with 4 GB of RAM.
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3.2. Results of Case Studies

To test proposed model for microgrid expansion planning and operation, the following
five cases have been studied using the modified ORNL DECC microgrid test system.

• Case 0: No investment available;
• Case 1: Only ESS investment available on bus 5;
• Case 2: Only ESS and PV investment available on bus 5;
• Case 3: All technology investment available on bus 5;
• Case 4: All technology investment available on all buses.

The optimized results for these five cases are compared in Table 6. Case 0 is the base
case, which is basically the current microgrid system without any new investments. As can
be seen in Table 6, the objective function of case 1 has the highest value. In addition, case
0 has the highest annualized total cost (investment cost and operating cost), the highest
line power loss and the highest voltage deviations. In case 1, by investing 4 ESSs at bus
5, the annualized total cost (investment cost and operating cost) can be reduced by 10.3%.
In addition, the loss and voltage deviations are also reduced significantly. In case 2, by
investing another 145 kW PV at bus 5, the annualized total cost could be reduced by 19.5%
compared to that of case 0. In case 3, by investing additional 35 kW gas turbine CHP at bus
5, the annualized total cost can be further reduced. With all kinds of technology investment
available on all buses, the annualized cost can be reduced by 34.8% compared to that of
case 0. This indicates that the siting of new components has significant impacts on the
annualized total cost, the line power loss and the voltage deviations.

Table 6. Comparing optimization results of five cases.

Case No. 0 1 2 3 4

Objective Function 390,235 340,007 308,415 282,069 243,419

Investment Cost ($) 0 6146 29,148 33,039 53,526

Operating Cost ($) 361,295 317,900 261,579 235,107 181,856

Cost Reduction (%) N/A 10.3 19.5 25.8 34.8

Line Power Loss
(kWh) 28,524 15,801 17,427 13,535 7639

Voltage Deviation
(p.u.) 416.6 160.2 260.4 387.7 197.9

New Investments N/A

Two
3.3 kW/6.4 kWh

ESSs; two
15 kW/30 kWh

ESSs

Two
3.3 kW/6.4 kWh

ESSs; two
15 kW/30 kWh

ESSs; 146 kW PV
roof

Two
3.3 kW/6.4 kWh

ESSs; two
15 kW/30 kWh

ESSs; 135 kW PV
roof; one 35 kW
gas turbine CHP

Bus 2 : Two 3.3 kW/6.4 kWh ESSs
+ Two 15 kW/30 kWh ESSs + One
35 kW gas turbine CHP+ 130 kW

PV roof; Bus 5 : Two
3.3 kW/6.4 kWh ESSs + two

15 kW/30 kWh ESSs + one 35 kW
gas turbine CHP + 64 kW PV roof

The total objective value, investment and operating costs, total line losses, and total
voltage deviations among different cases are compared in Figure 5. As the case number
increases, i.e., more investment options are enabled for the optimization, the total objec-
tive value decreases obviously. Theoretically, enabling more investment options means
enlarging the feasible region. Therefore, the total objective value is reduced. As the in-
vestment cost increases, the operating cost decreases. Nevertheless, the annualized total
cost (investment cost and operating cost together) strictly decreases, i.e., by investing new
DGs and ESSs in an existing microgrid, the annualized overall cost of the microgrid could
be reduced.
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Figure 5. Comparison of total objective value, costs, losses, and total voltage deviations among
different cases.

Beside costs, the total line losses and total voltage deviation are also included in the
objective function as performance indices, which are compared in Figure 5. It should also
be noted that the line power loss and voltage deviation are not always getting reduced
as more investment options are enabled. This is because we are targeted to minimize the
weighted multiobjective function, not individual objective. Meanwhile, the annualized
total cost is dominating the total objective value, which could be seen from Table 6. In
case 2 and 3, the total voltage deviation is sacrificed to get better weighted multiobjective
function value.

To compare the voltage profiles of the system in different cases, the distribution density
of bus voltages corresponding to all buses for the whole optimization horizon is shown
in Figure 6. In particular, Figure 6a corresponds to the base case 0 in Table 6. As can been
seen, the initial system has some low voltage issues. With new ESSs invested on bus 5
in case 1, the low voltage issues have been eliminated in Figure 6b. With additional PV
invested on bus 5 in case 2, some high voltage issue starts to happen in Figure 6c. The high
voltage issue is more obvious in Figure 6d when addition gas turbine CHP is installed on
bus 5. This is due to the constraint that new investment options are only available on bus 5,
which is at the end of the feeder. The voltage deviation is sacrificed for lower annualized
total cost, so that the value of the objective function could be reduced as mentioned earlier.
Relaxing this constraint and allowing all kinds of new investment options on all buses as
in case 5, the high voltage issue is solved in Figure 6e by installing new ESSs, PV and gas
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turbine CHP on bus 2, which is in the middle of the feeder. Alternatively, this issue could
also be avoided by simply increasing the weighting factor of voltage deviation.

(a) (b)

(c) (d)

(e)

Figure 6. Distribution density of voltages for all nodes in different cases. (a) Case 0; (b) Case 1;
(c) Case 2; (d) Case 3; (e) Case 4.



Energies 2022, 15, 3725 17 of 23

3.3. Sensitivity Analysis

To further validate the effectiveness of the proposed optimization model for optimal
expansion planning and operation of remote microgrids, sensitivity analysis has been
performed in this subsection. The sensitivity analysis is based on Case 2. In specific, the
PV investment cost and ESS investment cost are multiplied by different scaling factors.
Then, the invested PV capacity and ESS capacity under different investment costs are
compared in Figure 7. When the PV investment cost is scaled from 0.5 to 1.5, the invested
PV capacity increases from 127 kW to 162 kW, i.e., the higher cost of PV, the less invested
PV capacity. Similarly, the invested ESS capacity decreases from 200 kWh to 42.8 kWh
when the ESS investment cost is scaled from 0.5 to 1.5, i.e., the higher cost of ESS, the less
invested ESS capacity.

(a) (b)

Figure 7. Invested PV and ESS capacity under various scaling factors of PV and ESS investment cost.
(a) Invested PV capacity under various PV investment cost; (b) Invested ESS capacity under various
ESS investment cost.

4. Conclusions

In this paper, a three-stage MILP optimization is proposed for the optimal expansion
planning and operation of remote microgrids. Considering various demands of electricity,
heating, and cooling, the proposed MILP optimization minimizes the annualized costs
of microgrids; meanwhile, enhance the performance of the system by determining the
optimal DGs and ESSs mix selection, siting, sizing, and scheduling. For practical purpose,
the available capacities of DGs and ESSs are modeled as discrete constants instead of
continuous variables, and linearized power flow and heat flow equations are employed in
the proposed model.

The proposed optimization model is validated by numerical simulation results on a
remote microgrid consisting of DGs, ESSs, and various loads. Comparing with the base
case, i.e., existing system without any investment, it has been shown that the annualized
total cost could be significantly reduced (up to around 35%), by investing new DGs and
ESSs on certain buses. Meanwhile, the total line losses and voltage deviation could be
reduced, i.e., the system performance could be improved.

Future works to improve the proposed multienergy microgrid planning model include
the following aspects:

• Expanding the current balanced power flow model to practical three-phase unbalanced
situation.

• Improving the heat flow model to consider the heating losses of the heat distribution
network.
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• Enhancing the resilience of power supply under extreme weather events by integrating
the reliability and resilience of microgrids into the objective function or constraints.
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Nomenclature
The symbols used in this paper are defined below. A bold symbol stands for its corresponding
vector/matrix:

Indices and Numbers
n Index of buses, running from 1 to NN
j Index of selections for each technology
i Index of numbers for a specific selection for each technology
t Index of time periods, running from 1 to NT
m Index of energy blocks offered by DGs, running from 1 to NI
NPV, NPVEX Number of photovoltaics (PV) investment selections and existing PV
NFC, NFCEX Number of fuel cell investment selections and existing fuel cells
NFCj Number of candidate units in fuel cell investment selection j
NFCC, NFCCEX Number of fuel cell combined heat and power (CHP) investment

selections and existing fuel cell CHP
NFCCj Number of candidate units in fuel cell CHP investment selection j
NGT, NGTEX Number of gas turbine investment selections and existing gas turbines
NGTj Number of candidate units in gas turbine investment selection j
NGTC, NGTCEX Number of gas turbine CHP investment selections and existing gas

turbine CHP
NGTCj Number of candidate units in gas turbine CHP investment selection j
NBT, NBTEX Number of energy storage system (ESS) investment selections and

existing ESSs
NBTj Number of candidate units in ESS investment selection j
Variables
Binary Variables
UFC

nji 1 if fuel cell i of size selection j is invested at bus n and 0 otherwise.
UFCC

nji 1 if fuel cell CHP i of size selection j is invested at bus n and 0 otherwise.
UGT

nji 1 if gas turbine i of size selection j is invested at bus n and 0 otherwise.

http://energy.gov/downloads/doe-public-access-plan
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UGTC
nji 1 if gas turbine CHP i of size selection j is invested at bus n and 0

otherwise.
UBT

nji 1 if ESS i of size selection j is invested at bus n and 0 otherwise.
uFC

njit 1 if fuel cell i of size selection j at bus n is scheduled on during period t
and 0 otherwise.

uFCC
njit 1 if fuel cell CHP i of size selection j at bus n is scheduled on during

period t and 0 otherwise.
uGT

njit 1 if gas turbine i of size selection j at bus n is scheduled on during
period t and 0 otherwise.

uGTC
njit 1 if gas turbine CHP i of size selection j at bus n is scheduled on during

period t and 0 otherwise.
uC

njit, uD
njit 1 if ESS i of size selection j at bus n is scheduled charging/discharging

during time t and 0 otherwise.
uFCEX

it 1 if existing fuel cell i is scheduled on during period t and 0 otherwise.
uFCCEX

it 1 if existing fuel cell CHP i is scheduled on during period t and 0
otherwise.

uGTEX
it 1 if existing gas turbine i is scheduled on during period t and 0

otherwise.
uGTCEX

it 1 if existing gas turbine CHP i is scheduled on during period t and 0
otherwise.

uDGEX
it 1 if existing diesel generator i is scheduled on during period t and 0

otherwise.
Continuous Variables
CapPV

ni Invested capacity of PV selection i at bus n.
PPV

nit Power of invested PV selection i at bus n during period t.
pFC

njit(m) Power output scheduled from the m-th block of energy offer by fuel cell i

of size selection j at bus n during period t. Limited to pFC,max
njit (m).

pFCC
njit (m) Power output scheduled from the m-th block of energy offer by fuel cell

CHP i of size selection j at bus n during period t. Limited to pFCC,max
njit (m).

pGT
njit(m) Power output scheduled from the m-th block of energy offer by gas

turbine i of size selection j at bus n during period t. Limited to pGT,max
njit (m).

pGTC
njit (m) Power output scheduled from the m-th block of energy offer by gas

turbine CHP i of size selection j at bus n during period t. Limited to
pGTC,max

njit (m).
pch

njit, pdch
njit Charging/discharging power of ESS i of size selection j at bus n during

period t. Limited to Pch,max
j and Pdch,max

j .
Gnt Purchased natural gas for direct heating at bus n during time t.
Pf t, Q f t Real/ reactive power on line f during period t.
PFC

njit, QFC
njit Real/reactive power output of fuel cell i of size selection j at bus n during

period t.
PFCC

njit , QFCC
njit Real/reactive power output of fuel cell CHP i of size selection j at bus n

during period t.
PGT

njit, QGT
njit Real/reactive power output of gas turbine i of size selection j at bus n

during period t.
PGTC

njit , QGTC
njit Real/reactive power output of gas turbine CHP i of size selection j at bus

n during period t.
QBT

njit Reactive power output of ESS i of size selection j at bus n during period t.
SOCnjit State of charge of ESS i of size selection j at bus n during period t.
Vnt Voltage magnitude of bus n during period t.
HFCC

njit Heating power output of fuel cell CHP i of size selection j at bus n during
period t.

HGTC
njit Heating power output of gas turbine CHP i of size selection j at bus n

during period t.
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HH
nt, HC

nt Heating power serving heating/cooling demand at bus n during time t.
PH

nt , PC
nt Heat pump power consumption for heating/cooling demand at bus n

during time t.
XV

nt Auxiliary variables
Constants
λFC

j (m) Marginal cost of the m-th block of energy offer by fuel cell selection j.
λFCC

j (m) Marginal cost of the m-th block of energy offer by fuel cell CHP selection j.
λGT

j (m) Marginal cost of the m-th block of energy offer by gas turbine selection j.
λGTC

j (m) Marginal cost of the m-th block of energy offer by gas turbine CHP
selection j.

λch
j (m), λdch

j (m) Charging/discharging cost ESS selection j.
λG

nt Natural gas price at bus n during period t.
r Annual interest rate. Set as 5%.
lPV
i , lBT

j Lifetime of PV/ESS selection i.
lFC
j , lFCC

j Lifetime of fuel cell/fuel cell CHP selection j.
lGT
j , lGTC

j Lifetime of gas turbine/gas turbine CHP selection j.
CPV

i , CBT
j Initial investment cost of PV/ESS selection i.

CFC
j , CFCC

j Initial investment cost of fuel cell/fuel cell CHP selection j.
CGT

j , CGTC
j Initial investment cost of gas turbine/gas turbine CHP selection j.

CapFC
j , CapFCC

j Rated capacity of fuel cell/fuel cell CHP selection j.
CapGT

j , CapGTC
j Rated capacity of gas turbine/gas turbine CHP selection j.

COMPV
i Operation & Maintenance (O&M) cost of PV selection i.

COMFC
j , COMFCC

j O&M cost of fuel cell/fuel cell CHP selection j.
COMGT

j , COMGTC
j O&M cost of gas turbine/gas turbine CHP selection j.

COMBT
j O&M cost of ESS selection j.

κFC
j Operating Cost of fuel cell selection j at the point of PFC,min

j .

κFCC
j Operating Cost of fuel cell CHP selection j at the point of PFCC,min

j .

κGT
j Operating Cost of gas turbine selection j at the point of PGT,min

j .

κGTC
j Operating Cost of gas turbine CHP selection j at the point of PGTC,min

j .
Vmax

thr , Vmin
thr Maximum/Minimum voltage thresholds beyond which voltage deviation

will be minimized.
Vmax, Vmin Maximum/Minimum voltage deviations.
r f , x f Resistance and reactance of line f .
SPV

i Size of unit capacity of PV selection i.
∆max

n Maximum area for PV investment at bus n.
PFC,max

j , PFC,min
j Maximum/minimum power of fuel cell selection j.

PFCC,max
j , PFCC,min

j Maximum/minimum power of fuel cell CHP selection j.

PGT,max
j , PGT,min

j Maximum/minimum power of gas turbine selection j.

PGTC,max
j , PGTC,min

j Maximum/minimum power of gas turbine CHP selection j.

SOCBT,max
j , SOCBT,min

j Maximum/minimum state of charge of ESS selection j.
ηC

j , ηD
j ESS selection j charging/discharging efficiency factor.

PFFC,min
j , PFFC,max

j Power factor limit of fuel cell selection j.

PFFCC,min
j , PFFCC,max

j Power factor limit of fuel cell CHP selection j.

PFGT,min
j , PFGT,max

j Power factor limit of gas turbine selection j.

PFGTC,min
j , PFGTC,max

j Power factor limit of gas turbine CHP selection j.

PFBT,C,min
j , PFBT,C,max

j Power factor limit of ESS selection j when charging.

PFBT,D,min
j , PFBT,D,max

j Power factor limit of ESS selection j when discharging.
SFC

j , SFCC
j Apparent power limit of fuel cell/fuel cell CHP selection j.

SGT
j , SGTC

j Apparent power limit of gas turbine/gas turbine CHP selection j.
SBT

j Apparent power limit of ESS selection j.
S f Apparent power limit of line f .
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HPRFCC
j Heat to power ratio of fuel cell CHP selection j.

HPRGTC
j Heat to power ratio of gas turbine CHP selection j.

LH
nt, LC

nt Heating/cooling demand at bus n during time t.
βR Heat recovery efficiency of CHP generators
βG Efficiency of burning natural gas for heating.
δH , δC Coefficient of performance (COP) of heat pump for heating/cooling.
γC COP of absorption chiller.
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