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A B S T R A C T

Power grid model parameters may contain errors due to various reasons. Detecting and correcting parameter
errors typically requires significant computational effort due to the size and complexity of the parameter
database. While the normalized Lagrange multiplier (NLM) method can effectively detect, identify and correct
parameter errors, its computational burden could rapidly grow with increasing system size. This paper
addresses this issue by proposing a multi-area parameter error identification method. Each area has its own
outlier detection tool for detecting the incorrect parameters and measurements within the area. On the other
hand, due to the reduced redundancy at area boundaries, parameter errors on branches incident to boundary
buses may not be detected. Such errors are subsequently detected by a coordination level estimator completing
the system-wide parameter detection procedure. Performance of the developed method is demonstrated using
the IEEE 118-bus and 2000-bus Texas synthetic systems.
1. Introduction

State estimation (SE) is a critical part of the energy management
systems for monitoring the power system and detecting the errors in
the measurements or the network model. Following the introduction
of power system SE by Schweppe in 1970, the computational issues
were recognized in applying SE in large utility systems. Multi-area state
estimation (MASE) formulations were thus proposed to improve the
scalability and numerical issues. The MASE proved to be promising
by reducing CPU times especially when implemented in parallel pro-
cessors. Given a large interconnected power grid with multiple control
areas, MASE formulation facilitates efficient implementation of system-
wide SE where individual regional control centers can monitor the local
states and a coordination level SE will not only compute the global
solution but also process bad data missed by individual area SEs. Thus,
state estimators can be implemented to monitor the local states across
multiple voltage levels in the energy management systems.

Each individual system operator (ISO) has its own state estimator
for monitoring the local network based on the local measurements in
the multi-area and distributed SE. The primary challenge, however, is
how to obtain the global solution for the whole system. The literature
on the topic is quite rich in the past several decades. A two-level SE was
proposed in [1,2], where the main motivation was to reduce computa-
tional burden. Several investigators contributed to the development of
efficient ways to utilize a MASE algorithm as discussed in [3–7]. In the
first level (lower level), ISOs make use of the existing SE algorithms to
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estimate the states based on their local substation measurements. Then,
the boundary estimated states and measurements are transferred to a
coordination level (aggregation level, second level, upper level) for the
final adjustments and determination of the global states. Phase angles
are updated based on the estimated phase angle differences for each
area in the coordination level.

The benefits of incorporating phasor measurement unit (PMU) mea-
surements into MASE are illustrated in [4]. In [5], PMUs are systemati-
cally placed in each area to obtain the phase angle differences between
the zones. The MASE concept is further exploited in [6] using non-
overlapping areas to carry out observability and bad data analyses.
One advantage of using MASE is that sensor failures, bad data or cyber
attacks in one region will not deteriorate the SE solution of other areas.
In fact, the work reported in [7] is inspired by this observation. A fixed
Jacobian matrix is used in [8] as done in the fast second-order load
flow method. Sensitivity functions of areas are being exchanged in [9]
instead of boundary measurements and states.

Distributed SE methods aim to address the scalability issue without
any central coordinator [10–14]. An iterative distributed SE algorithm
relying on exchange of states among areas is presented in [10]. A dis-
tributed SE based on Huber’s robust M-estimator is developed in [11].
The bilinear SE is extended to MASE in [12,13] with minimum data
exchange between the adjacent areas. A distributed multi-agent SE
method with asynchronous communicating agents is proposed in [14].
A comprehensive review of multi-area and distributed SE methods can
be found in [15].
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All of the MASE algorithms proposed so far assume that the network
parameters are perfectly known. This assumption however is seldom
true due to various reasons including human data entry errors, unre-
ported changes in line configurations or conductors, changes due to
variations in ambient temperature, etc. Early parameter error identi-
fication methods are primarily based on residual sensitivity analysis
as described in [16,17]. Another approach is based on augmenting
a suspect set of parameters with the states and then estimating both
simultaneously [18]. Both approaches have obvious limitations as they
cannot differentiate between measurement and parameter errors. More-
over, the scalability of these methods to large power systems is difficult
especially for the state augmentation methods.

An alternative approach which is based on the normalized Lagrange
multiplier (NLM) test is introduced in [19] for detecting, identifying
and correcting parameter errors. The salient point of the NLM method
is its compatibility with the largest normalized residuals (LNR) test for
bad data detection which enables simultaneous detection and identifi-
cation of parameter and measurement errors. The NLM test is revisited
and further improved in [20,21]. The first step to perform the NLM test
is to calculate the Jacobian with respect to the network parameters (𝐻𝑝)
which is typically quite large for large scale power grids.

In this paper, the multi-area framework is extended to the si-
multaneous measurement and parameter error identification problem
formulation. From the computational point of view, the bottleneck in
implementation and execution of the LNR and NLM methods in large
systems is the calculation of the covariance matrices for the residual
and Lagrange multipliers. So, it is possible to exploit the computational
framework of MASE for parameter error identification as well. This is
accomplished by detecting parameter and measurement errors in indi-
vidual areas by the local state estimators and corresponding NLM/LNR
tests. Assuming that each area measurement configuration is well de-
signed with enough redundancy, undetected parameter/measurement
errors will mainly be associated with the boundary branches where the
measurement redundancy is inadvertently reduced due to the network
partitioning. Such errors will be detected at the coordination level,
where the shared boundary information from the individual areas will
be used for state estimation and error processing. This framework en-
ables accurate monitoring of energy transactions across area boundaries
in a deregulated power grid. If a parameter error exists at the boundary
of two areas, it cannot be detected by individual areas, but will be
identified at the coordination level.

It is shown that the CPU time can be drastically improved by
avoiding the full system integrated SE and bad data processing. It is
shown earlier in [22] that sparsity methods can be used to significantly
reduce the computational burden of the NLM method. The presented
multi-area approach of this paper will further improve the performance
by reducing the size of the covariance matrices. Also, in cases where
a centralized SE cannot be implemented due to the reluctance of
individual areas to share measurement and network data, this approach
can facilitate implementation of the NLM/LNR based parameter and
measurement error detection method for the entire system.

2. Multi-Area State Estimation Solution

The MASE is motivated by two objectives: first, increasing the SE
computational efficiency by executing the SE on parallel processors
and second, the need to obtain a system-wide solution considering a
deregulated multi-area power grid. First, a brief review of the MASE
formulation will be presented below.

2.1. Area specification and individual area state estimation

Consider an 8-bus example system shown in Fig. 1. Tie lines (B4–B5)
separate different zones and three types of buses are identified for the
given network partitioning:
2

Fig. 1. Area configuration and bus assignment.

• Internal buses (B𝑖𝑛𝑡): buses which are within individual areas and
not connected to any of the buses from other areas. B1, B2, and
B3 are internal buses for area-1.

• Boundary buses (B𝑏): buses which are directly connected to other
areas by tie lines. B4 and B5 are boundary buses for area-1 and
area-2, respectively.

• External buses (B𝑒𝑥𝑡,𝜅): buses which are within the 𝜅-tier out of
the boundary buses. B5 and B4 are external buses with 𝜅 = 1 for
area-1 and area-2, respectively.

Each area includes buses from the internal, boundary, and external (𝜅-
tier-out) sets. Thus, areas overlap with each other, and boundary buses
are included in at least two different areas. Choosing 𝜅 ∈ N for external
buses is optional and a bigger value leads to a more accurate solution.
However, 𝜅 > 1 means that the ISOs should share more information
with the neighbors which increases the size of each area and, more
importantly, may not be allowed by the area privacy policies. So, a
reasonable choice would be 𝜅 = 1, where only boundary buses of
neighboring zones are included in each area.

Considering the SCADA measurements, measurement equations for
the area 𝑖 = {1, 2,… , 𝑙} is given by:

𝒛𝑖 = 𝒉𝑖(𝒙𝑖) + 𝒆𝑖 (1)

where, 𝒛𝑖 and 𝒆𝑖 are [𝑚𝑖 × 1] measurement and measurement error vec-
tors for the area 𝑖, respectively. 𝒉(.) denote the nonlinear measurement
vector function. 𝒙𝑖 is the state vector for the area 𝑖 which is defined as
follows:

𝒙𝑖 =
[

[𝒙𝑖𝑛𝑡𝑖 ]𝑇 [𝒙𝑏𝑖 ]
𝑇 [𝒙𝑒𝑥𝑡,𝜅𝑖 ]𝑇

]𝑇 (2)

where, 𝒙𝑖𝑛𝑡𝑖 , 𝒙𝑏𝑖 , and 𝒙𝑒𝑥𝑡,𝜅𝑖 consist of the phase angles and voltage
magnitudes in B𝑖𝑛𝑡

𝑖 , B𝑏
𝑖 , and B

𝑒𝑥𝑡,𝜅
𝑖 , respectively. Typically active and

reactive power injections and flows and also voltage magnitudes at
some buses are measured by SCADA system. So, 𝒛𝑖 can be formed as
follows:

𝒛𝑇𝑖 =
[

[𝑃 𝑖
𝑘]

𝑇 [𝑃 𝑖
𝑘𝑚]

𝑇 [𝑄𝑖
𝑘]

𝑇 [𝑄𝑖
𝑘𝑚]

𝑇 [|𝑉 𝑖
𝑘 |]

𝑇 ] (3)

where:

power flows: 𝑘, 𝑚 ∈ {B𝑖𝑛𝑡
𝑖 ∪B𝑏

𝑖 ∪B
𝑒𝑥𝑡,𝜅
𝑖 }

power injections: 𝑘 ∈ {B𝑖𝑛𝑡
𝑖 ∪B𝑏

𝑖 ∪B
𝑒𝑥𝑡,𝜅−1
𝑖 }

Note that 𝜅 − 1 is used in B
𝑒𝑥𝑡,𝜅−1
𝑖 for the injections since expression

for an injection measurement includes states of one-tier-out from that
bus. As there is no more information beyond the external bus(es), their
injections will be excluded from the area injection set.

Given the non-linearity of (1), the weighted least squares (WLS) can
be formulated as follows for each area:
𝑚𝑖𝑛 𝐽 (𝒙𝑖) = 𝒓𝑇𝑖 𝑹

−1
𝑖 𝒓𝑖

𝑠.𝑡. 𝒓𝑖 = 𝒛𝑖 − 𝒉𝑖(𝒙𝑖)
(4)

where, 𝑹𝑖 is the measurement error covariance matrix which is defined
as follows for area 𝑖:

2 2 2
𝐶𝑜𝑣(𝒆𝑖) = 𝑹𝑖 = 𝑑𝑖𝑎𝑔(𝜎1 , 𝜎2 ,… , 𝜎𝑚𝑖
) (5)
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where, 𝜎 denotes the standard deviation representing the accuracy of
the corresponding measure. Then, states for each area are estimated
independently by recursively solving the following equation which is
known as the normal equation:

[𝑮𝑖(𝒙̂𝑖)]𝛥𝒙̂𝑖 = 𝑯𝑇
𝑖 (𝒙̂𝑖)𝑹

−1
𝑖 [𝒛𝑖 − 𝒉𝑖(𝒙̂𝑖)] (6)

here, 𝑮𝑖 is the gain matrix for the area 𝑖:

𝑖(𝒙̂𝑖) = [𝑯𝑇
𝑖 (𝒙̂𝑖)]𝑹

−1
𝑖 [𝑯 𝑖(𝒙̂𝑖)] (7)

.2. Coordination level state estimation

Individual area SE solutions are obtained by performing the local
stimators on the extended areas as explained in the previous subsec-
ion. In order to obtain the system-wide solution, each area transfers
he measurements, states, and parameters pertaining to the boundary,
-tier-out, and 𝜅-tier-in buses. Then, with the transferred information
rom the first level, the same WLS SE problem of (4) will be solved:

𝑚𝑖𝑛 𝐽 (𝒙𝑐 ) = 𝒓𝑇𝑐 𝑹
−1
𝑐 𝒓𝑐

.𝑡. 𝒓𝑐 = 𝒛𝑐 − 𝒉𝑐 (𝒙𝑐 )
(8)

here, subscript 𝑐 denotes the coordination level. Let us define B
𝑖𝑛𝑡,𝜅
𝑖

s the set of 𝜅-tier-in buses from boundary buses in the area 𝑖. Then,
he coordination level state vector can be defined as follows:

𝑐 =
[

[𝒙𝑖𝑛𝑡,𝜅𝑖 ]𝑇 [𝒙𝑏𝑖 ]
𝑇 [𝒙𝑒𝑥𝑡,𝜅𝑖 ]𝑇 𝒖𝑇

]𝑇 (9)

or all 𝑖 = {1, 2,… , 𝑙}. 𝒙𝑖𝑛𝑡,𝜅𝑖 , 𝒙𝑏𝑖 , and 𝒙𝑒𝑥𝑡,𝜅𝑖 consist of the phase angles
nd voltage magnitudes in B

𝑖𝑛𝑡,𝜅
𝑖 , B𝑏

𝑖 , and B
𝑒𝑥𝑡,𝜅
𝑖 , respectively. 𝒖 =

𝑢1, 𝑢2,… , 𝑢𝑙]𝑇 is a [𝑙×1] vector determining the phase angle adjustment
f area 𝑖 ∈ {2,… , 𝑙} with respect to the area 1 reference bus, due to the
election of local references by the individual area state estimators.
𝑇
𝑐 =

[

[𝑃 𝑖
𝑘]

𝑇 [𝑃 𝑖
𝑘𝑚]

𝑇 [𝑄𝑖
𝑘]

𝑇 [𝑄𝑖
𝑘𝑚]

𝑇 [𝜃̂𝑖𝑘]
𝑇 [|𝑉 𝑖

𝑘 |]
𝑇 ] (10)

here:

ower flows: 𝑘, 𝑚 ∈ {B𝑖𝑛𝑡,𝜅
𝑖 ∪B𝑏

𝑖 ∪B
𝑒𝑥𝑡,𝜅
𝑖 }

ower injections: 𝑘 ∈ {B𝑖𝑛𝑡,𝜅−1
𝑖 ∪B𝑏

𝑖 ∪B
𝑒𝑥𝑡,𝜅−1
𝑖 }

seudo measurements:𝑘 ∈ {B𝑖𝑛𝑡,𝜅
𝑖 ∪B𝑏

𝑖 ∪B
𝑒𝑥𝑡,𝜅
𝑖 }

𝑉 𝑖
𝑘 | and 𝜃̂𝑖𝑘 are voltage magnitudes and phase angles which are es-

imated in the first stage by individual area estimators. So, these
stimations can be used in the coordination level as pseudo mea-
urements. In order to assign appropriate weights for these pseudo
easurements, state covariance matrix should be calculated for each

rea as follows:

𝒙̂𝑖 = E(𝒙̂𝑖𝒙̂𝑇𝑖 ) = E(𝑮−1
𝑖 𝑯𝑇

𝑖 𝑹
−1
𝑖 𝒆𝒆𝑇𝑹−1

𝑖 𝑯 𝑖𝑮−1
𝑖 )

= 𝑮−1
𝑖 𝑯𝑇

𝑖 𝑹
−1
𝑖 E(𝒆𝒆𝑇 )𝑹−1

𝑖 𝑯 𝑖𝑮−1
𝑖

= 𝑮−1
𝑖

(11)

Using (2), (3), (9), and (10), the structure of the measurement
acobian 𝑯 will take the following form:

(12)

The given matrix structure refers to the coordination level Jacobian
where the blue rows correspond to the pseudo measurements, and the
column to the vector 𝒖. Removing the blue rows and columns will yield
the Jacobian structure for individual areas.
3

p

2.3. Bad data detection and correction

Bad data processing follows the largest normalized residual (LNR)
method. The residual sensitivity matrix will be obtained first as:

𝑺 = [𝑰]𝑚𝑖×𝑚𝑖
−𝑲 (13)

here:

= 𝑯𝑮−1𝑯𝑇𝑹−1 (14)

Then, the residual covariance matrix for the first and second (coor-
ination) levels will be computed as follows:

= 𝑐𝑜𝑣(𝒓) = E(𝒓𝒓𝑇 ) = 𝑺𝑹 (15)

btaining the 𝑚×𝑚 matrices 𝑲, 𝑺, and 𝜴 requires significant CPU time
or very large systems. Addressing this bottleneck will be discussed in
ection 4.

The normalized residuals are obtained by dividing the measurement
esiduals by the square root of the diagonal entries of the residual
ovariance matrix as follows:

𝑁 (𝑞) =
𝒓(𝑞)

√

𝜴(𝑞, 𝑞)
(16)

Based on the LNR test, if the largest value among 𝒓𝑁 entries is greater
than 3, then the corresponding measure will be asserted as erroneous.
The LNR test is implemented in all the individual areas as well as
in the coordination level to identify bad data within each area and
boundaries. Given the smaller size matrices especially in (14)–(15)
significantly simplifies and accelerates the computations. If the 𝑞th
measurement is detected as bad data, it will be corrected as follows:

𝒛𝑐𝑜𝑟(𝑞) = 𝒛(𝑞) − 𝒓(𝑞)
𝑺(𝑞, 𝑞)

(17)

. Multi-area parameter error identification

The measurements can be written as a function of the states and
arameter errors vector 𝒑𝑒 (𝒑𝑒 = 𝒑 − 𝒑𝑡𝑟𝑢𝑒) which can be expressed as
ollows for individual areas 𝑖 = {1, 2,… , 𝑙} and also for the coordination
evel [19]:

= 𝒉(𝒙,𝒑𝑒) + 𝒆 (18)

nitially assuming no parameter errors but incorporating the parameter
rror vector into the WLS SE formulation as a constraint:

𝑖𝑛 𝐽 (𝒙) = 𝒓𝑇𝑹−1𝒓

𝑠.𝑡. 𝒓 = 𝒛 − 𝒉(𝒙)

𝒑𝑒 = 0

(19)

he equality constraints are usually incorporated in the Lagrangian
sing appropriate Lagrange multipliers as follows:

(𝒙,𝒑𝑒,𝝀) =
1
2
𝒓𝑇𝑹−1𝒓 − 𝝀𝑇 𝒑𝑒 (20)

So, there are three optimality conditions with respect to 𝑥, 𝜆, and 𝑝 that
hould be satisfied. The first one 𝜕L∕𝜕𝑥 = 0 yields the normal Eq. (6) as

explained before. 𝜕L∕𝜕𝜆 = 0 gives the equality constraint 𝒑𝑒𝑖 = 0 itself.
Solving the third one, 𝜕L∕𝜕𝑝 = 0 yields the Lagrange multipliers vector
as follows:

𝝀 = −[𝑯𝑝]𝑇𝑹−1𝒓 (21)

here, 𝑯𝑝 is the Jacobian with respect to the network parameters.
upposing the 𝛱 model for the transmission lines, there are three

arameters associated with each line, i.e., resistance, reactance, and
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line charging susceptance. So, the structure of 𝑯𝑝 can be represented
as follows:

(22)

where, the blue areas are related to the 𝑯𝑝 in the coordination level
when the pseudo measurements are also incorporated. Supposing 𝑛𝑏𝑟
as the number of transmission lines, 𝑹, 𝑿, and 𝑩 are [𝑛𝑏𝑟 × 1] vectors
of all branch resistance, reactance, and line charging susceptances, re-
spectively. The covariance matrix of the Lagrange multipliers is defined
as follows:
𝜦 = 𝑐𝑜𝑣(𝝀) = E(𝝀𝝀𝑇 )

= 𝑯𝑇
𝑝 𝑹

−1E(𝒓𝒓𝑇 )𝑹−1𝑯𝑝

= [𝑯𝑝]𝑇𝑹−1𝑺𝑯𝑝

(23)

𝜦 is a [3𝑛𝑏𝑟 × 3𝑛𝑏𝑟] matrix whose dimension will be extremely large
even for a typical utility system. As will be explained later multi-
area approach is an efficient method for addressing this computational
bottleneck.

Normalizing the Lagrange multipliers with respect to the square root
of the diagonal entries of its covariance matrix:

𝝀𝑁 (𝑘) =
𝝀(𝑘)

√

𝜦(𝑘, 𝑘)
(24)

According to the normalized Lagrange multiplier (NLM) test (similar
to the LNR test), if the largest 𝝀𝑁 is greater than 3, then the corre-
sponding parameter will be selected as a suspect parameter. This test
is implemented in the individual areas in order to secure the local
estimators against parameter errors. However, it is possible to miss
some erroneous cases due to the lack of measurement redundancy. As
such, the NLM test is also implemented in the coordination level to
detect undetected parameter errors by the local area estimators. This
is feasible at the coordination level due to measurement consolidation
and regaining the reduced redundancy at the boundaries.

Similar to the measurement correction, if the 𝑞th parameter is
detected as erroneous by the NLM test, this can be corrected using the
corresponding Lagrange multiplier and its covariance, as follows [23]:

𝒑𝑐𝑜𝑟(𝑞) = 𝒑(𝑞) − 𝝀(𝑞)
𝜦(𝑞, 𝑞)

(25)

The comprehensive block diagram of the proposed method is shown
in Fig. 2.

4. Discussion and simulation results

In order to test and validate the robustness of the proposed multi-
area approach, several simulations are performed on the IEEE 118-bus
system, and 2000-bus Texas synthetic system [24]. Unless otherwise
stated, power injection pairs (active and reactive) at all buses, power
flow pairs at from end of the branches, and voltage magnitudes at 10%
of the buses constitute the measurement configuration for all the test
cases. Furthermore, although it is reasonable to assume at least one
PMU in each area, no such assumption is made for the simulations.
If there is at least one PMU in each area, then the SE results will
be improved as the phase angle differences between the areas will be
known. Features of test systems, including the number of buses, number
of branches, and number of areas are given in Table 1.
4

Fig. 2. Block diagram of the proposed method.

Table 1
Test systems features.

IEEE 118-bus 2000-bus Texas

No. of Buses 118 2000
No. of Branches 179 2667
No. of Areas 3 8

4.1. Identifying parameter error in internal branches

In this subsection, parameter errors in the internal branches are
studied. Internal branches are those whose terminal buses are in B𝑖𝑛𝑡

𝑖 .
The main purpose is to show how the local areas are identifying and
correcting the parameter errors which occur within the areas. To this
end, the resistance of the transmission line 31 − 32 in area-1 and the
line charging susceptance of the line 56 − 59 in area-2 in the IEEE-
118 bus system are increased by 30% and 40%, respectively. Results
of parameter error identification and correction are shown in Table 2.
Note that the choice of these and other branches for the rest of the
case studies is totally random and used as examples to illustrate the ap-
proach. The NLM approach is a well-established method for identifying
the parameter errors (please see [19–22]).

Similar to bad data detection using NR method, even a single
parameter error will cause increases in multiple residuals. As a re-
sult, observing a large number of parameters with significant 𝝀𝑁 s is
expected. However, based on the NLM method only the largest 𝝀𝑁

corresponds to the erroneous parameter in each identification cycle.
The three largest values of 𝝀𝑁 and the associated parameters are shown
in Table 2 for the area-1, 2, and the coordination level in the second
column. Results of area-3 are not shown due to negligible 𝝀𝑁 values.
The largest 𝝀𝑁 in area-1 is 55.60 which corresponds to 𝑋31−32. So, area-
1 SE promptly detects 𝑋31−32 as erroneous based on the largest NLM.
𝐵56−59 is also detected and corrected locally within area-2. Since the
coordination level has not detected an error in the boundaries, only the
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Table 2
Results of identifying multiple parameter errors in internal branches: IEEE 118-bus.

Par 𝜆𝑁 Detected?
Type
Parameter

Err. value
Est. value
True value

Area-1
𝑋31−32 55.60 Yes 0.12805
𝑋28−29 36.05 PE 0.0984
𝑅29−31 35.06 𝑋31−32 0.0985

Area-2
𝐵56−59 26.26 Yes 0.1547
𝑅56−59 15.34 PE 0.1104
𝐵54−56 9.89 𝐵56−59 0.1105

Coord. – < 10−4 No –

Table 3
Results of identifying multiple parameter errors in internal branches: 2000-bus Texas.

Par 𝜆𝑁 Detected?
Type
Parameter

Err. value
Est. value
True value

Area-2
𝐵112−93 108.75 Yes 1.0144
𝑋112−93 36.94 PE 0.7801
𝑋156−135 36.93 𝐵112−93 0.7803

Area-3
𝑅345−369 53.19 Yes 0.0382
𝑅231−369 31.72 PE 0.0293
𝐵345−369 24.56 𝑅345−369 0.0294

Area-6
𝑋1080−1238 89.92 Yes 0.1028
𝑋1080−1682 73.64 PE 0.0791
𝑋1238−1126 73.28 𝑋1080−1238 0.0791

Coord. – < 10−4 No –

largest 𝝀𝑁 is shown in the last row of Table 2 which is insignificant. The
status of parameter error identification is shown in the third column.
Finally, the incorrect parameter is estimated using (25). The erroneous
(Err.), estimated (Est.), and true values of the parameters are listed in
the fourth column. While multiple parameter errors are identified and
corrected by individual areas, this process would have been performed
sequentially if a central estimator were used.

The same scenario is repeated for the 2000-bus system where the
resistance of the transmission line 345 − 369 in area-3, the reactance
of the line 1080 − 1238 in area-6, and the line charging susceptance of
the line 112 − 93 in area-2 are all increased by 30%, simultaneously.
The results of parameter error identification and correction are shown
is Table 3. The results are similar to the ones in Table 2 and all the
parameter errors are detected and corrected within areas 2, 3, and 6.

4.2. Computation time analysis

In order to compare the performance of the multi-area and in-
tegrated implementation, a central SE, bad data identification, and
parameter error identification is also implemented. All the matrices
in both multi-area and central applications are implemented using
sparse matrix methods in MATLAB. Power flows from both ends of
the branches are considered in this subsection in order to increase the
number of measurements and hence the size of system matrices. So,
the total number of measurements and states for the 2000-bus system
are 14,868 and 4,000, respectively. Then, the central SE along with the
bad data and parameter error detection tools are executed, and the CPU
time profile is obtained. Fig. 3 is a pie chart showing the percentage of
the CPU time spent in calculating the system matrices for integrated
SE. As evident from Fig. 3, roughly 74% of the total CPU time is spent
calculating 𝐾. Furthermore, more than 95% is related to computation
of 𝐾, 𝛬, 𝑆, and 𝛺 which are utilized in bad data and parameter error
identification routines.

The performance of the central and multi-area formulation for the
2000-bus system is also illustrated in Fig. 4. The CPU time for all areas,
as well as the coordination (second) level and the central estimator,
are shown in Fig. 4. The results reflect the CPU time spent for the SE,
5

Fig. 3. Percent of CPU time for calculating important matrices.

Fig. 4. CPU time for the individual areas, coordination, and central estimators, bad
data, and parameter error identification.

bad data detection, and parameter error identification tasks in seconds.
If the individual estimators are assigned to different processors, then
the total CPU time for the first level will be limited by the slowest
area. The dashed red line in Fig. 4 shows the total CPU time for the
first and coordination level as they are running sequentially. These
simulation results validate the computational benefits of using the
proposed multi-area approach over the integrated solution.

4.3. Parameter error in boundary branches

In this subsection, parameter error is identified in a boundary
branch using the multi-area method. Boundary buses and areas for
the IEEE 118-bus system are shown in Fig. 5. The reactance 𝑋38−65
is corrupted by increasing the true value by 25%. The line 38 − 65
is on the boundary between area-1 and 2. With the existing measure-
ment configuration, the error is still detectable. So, some of the flow
measurements are deleted in order to simulate the case where there is
not enough measurement redundancy in the boundary. Results of the
parameter error detection for adjacent areas, i.e., area-1 and 2 and also
the coordination level, are tabulated in Table 4.

As can be seen from Table 4, the incorrect parameter could not be
detected or identified by local estimators. Even though this error is not
detected, its impact on the estimated states, especially in the adjacent
buses, is observed. This is the main reason why the coordination level
SE is needed. Since the power injections at both terminals are used
in the coordination level, the redundancy is improved, and the NLM
method manages to detect and identify the erroneous parameter.

4.4. Simultaneous parameter and measurement errors

One of the distinguishing features of the NLM/LNR method is
its ability to detect and identify measurement and parameter errors
simultaneously. In this subsection, the performance of the method is
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Fig. 5. IEEE 118-bus zones and boundary construction.

Table 4
Results of identifying multiple parameter errors in boundary branches: IEEE 118-bus.

Par 𝜆𝑁 Detected?
type
parameter

Err. value
Est. value
True value

Area-1 – < 10−3 No –

Area-2
𝑋65−68 22.42 Yes –
𝑋38−65 22.41 PE –
𝑅65−68 19.68 Not

Identified
–

Coord.
𝑋38−65 25.87 Yes 0.1232
𝑋65−68 21.14 PE 0.0987
𝑅38−37 18.52 𝐵56−59 0.0986

Table 5
Results of simultaneous measurement and parameter errors: 2000-bus, Area-1.

Par/ Meas Cycle 1 Cycle 2 Cycle 3 Cycle 4

𝑃 𝑖𝑛𝑗
17 𝑋17−29 𝑃 𝑖𝑛𝑗

17 𝑋17−29

𝑟𝑁𝑚𝑎𝑥 213.62 64.75 9.41 2.45
𝜆𝑁𝑚𝑎𝑥 98.13 35.69 5.49 4.48
Est. Value −0.1995 0.1401 −𝟎.𝟏𝟖𝟐𝟖 𝟎.𝟏𝟒𝟏𝟗
True Value −0.1834 0.1419 −0.1834 0.1419

tested when measurement and parameter errors coexist in the 2000-
bus system. To this end, the reactance 𝑋17−29 in area-1 is corrupted by
a 20% increase. Furthermore, a sign error i intentionally introduced in
the active power injection at bus 17 (𝑃 𝑖𝑛𝑗

17 ). The results of measurement
and parameter error detection for this scenario are shown in Table 5.
Since these errors do not have a significant impact on the neighboring
buses, Table 5 reflects the results of Area-1.

As indicated in Table 5 the NLM and LNR methods are cyclic, which
means one error will be detected and corrected in each cycle and the
SE execution will be repeated. For each cycle the maximum of 𝒓𝑁𝑚𝑎𝑥
and 𝝀𝑁𝑚𝑎𝑥 are reported. Then, the suspect measurement or parameter is
determined based on these values. Once the error is detected, it will
be corrected before going to the next cycle. So, the estimated and true
values of the erroneous parameter/measurement are presented in the
last two rows. Since these two errors are conforming and the magnitude
of the introduced errors is substantial, it takes four iterations for both
errors to be cleared. After the fourth iteration, the 𝒓𝑁 and 𝝀𝑁 values
drop off to insignificant values, below the detection threshold. The final
estimated values for 𝑋17−29 and 𝑃 𝑖𝑛𝑗

17 are shown in blue in Table 5.

5. Conclusion

This paper proposes a multi-area parameter error identification
which improves the efficiency especially in large power systems. This
is achieved by implementing bad data and parameter error detection
in the local areas if enough measurement redundancy is present. Then,
6

the boundary information between all areas is carried to the next level.
In this level, measurement redundancy will be enhanced and the errors
that are missed earlier, will be identified. It is shown that this has a
great impact on the efficiency of the overall bad data and parameter
error identification. Furthermore the scalability of the method is inves-
tigated using a large synthetic system. The CPU time analysis reveals
that the proposed multi-area approach provides significant speed-up
compared to the integrated solution.
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