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ABSTRACT This work presents a novelmicrogrid schedulingmodel considering the stochastic unintentional
islanding conditions as well as forecast errors of both renewable generation and loads. By optimizing the
dispatch of distributed energy resources (DERs), utility grid, and demand, the proposed model is targeted
to minimize total operating cost of the microgrid, including start-up and shut-down cost of distributed
generators (DGs), operation and maintenance (O&M) cost of DGs, cost of buying/selling power from/to
utility grid, degradation cost of energy storage systems (ESSs) and cost associated with load shedding.
To capture the stochastic unintentional islanding conditions and conventional forecast errors of renewable
generation and loads, a two-stage adaptive robust optimization is proposed to optimize the objective function
in the worst case scenario of the modeled uncertainties. The proposed optimization is solved with the
column and constraint generation (C&CG) algorithm. The result obtained ensures robust microgrid operation
in consideration of all possible realization of renewable generation, demand and unintentional islanding
condition. The proposed model is validated with results of case studies on a microgrid consisting of various
DGs and ESSs.

INDEX TERMS Robust scheduling, microgrids, uncertainty, unintentional islanding, column and constraint
generation (C&CG).

NOMENCLATURE
The term (s) and (k) in the upper right position stands for
scenario s and the k-th iteration, separately. A bold symbol
stands for the corresponding vector.

A. INDICES
i Index of dispatchable generators, running

from 1 to NG.
d Index of loads, running from 1 to ND.
b Index of batteries, running from 1 to NB.
w Index of wind turbines, running from 1 toNW .
v Index of photovoltaic (PV), running

from 1 to Nv.
t Index of time intervals, running from 1 to NT .
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approving it for publication was Guangya Yang .

s Index of scenarios, running from 1 to NS .
k, l Index of iterations.

B. VARIABLES
1) BINARY VARIABLES
uit 1 if unit i is scheduled on during period t and

0 otherwise.
ZG
t 1 if microgrid is grid-connected and

0 otherwise.

2) CONTINUOUS VARIABLES
Pit Power output of unit i during period t .
PPCCt Power at point of common coupling (PCC)

during period t .
PCbt ,P

D
bt Charging/discharging power of battery b dur-

ing period t .
SOCbt State of charge of battery b during period t .
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PWwt Power output of wind turbine w during
period t .

PPVvt Power output of PV panel v during period t .
PLdt Power consumption scheduled for load d dur-

ing period t .
PLSdt Load shedding of load d during period t .
µwt , µwt Auxiliary variables for forecast error of wind

power PWwt .
µvt , µvt Auxiliary variables for forecast error of PV

power PPVvt .
µdt , µdt Auxiliary variables for forecast error of

load PLdt .

C. CONSTANTS
Cbt Degradation cost of battery b during

period t .
CON
it Fixed operation and maintenance

(O&M) cost of DG i during period t .
λit Variable O&M cost of DG i during

period t .
λPCCt Utility rate during period t .
Pmax
i ,Pmin

i Maximum/minimum output of DG i.
PPCC,max
t Maximum PCC power during period t .
ˆPWwt Forecasted power output of wind tur-

bine w during period t .
ˆPPVvt Forecasted power output of PV panel v

during period t .
ˆPLdt Forecasted consumption of load d dur-

ing period t .
PC,max
b ,PD,max

b Maximum charging/discharging power
of battery b.

SOCmax
bt , SOCmin

bt Maximum/minimum state of charge of
battery b during period t .

ηCb , η
D
b Battery charging/discharging effic-

iency factor.
δWwt , δ

PV
vt , δ

L
dt Maximum deviations from the nominal

forecast values ˆPWwt ,
ˆPPVvt and ˆPLdt .

0P
t Robust control parameter of renewable

generation and demand during period t .
γ P
t Normalized robust control parameter

of renewable generation and demand
during period t .

0IS Robust control parameter of uninten-
tional islanding conditions.

γ IS Normalized robust control parameter
of unintentional islanding conditions.

4t Time duration of each period.
αdt Maximum percentage of allowed shed-

ding of demand d during period t .
π s Probability of scenario s.

I. INTRODUCTION
A microgrid could be seen as a controllable local energy
system consisting of various distributed generators (DGs),

energy storage systems (ESSs) and energy consumers. Nor-
mally, a microgrid is connected to a utility grid through the
Point of Common Coupling (PCC), but has the capability of
operating independently [1]. When connected to the utility
grid, a microgrid can not only import power from, or export
power to the utility distribution network under different oper-
ational conditions, but also provide various kinds of ancillary
services, e.g., frequency regulation, voltage support, virtual
inertia, etc., to the utility grid [2]–[4]. For energy consumers,
a microgrid can reduce carbon emission, improve energy
efficiency, and serve low-cost and clean energy. In particular,
through intentionally/unintentionally islanding from the util-
ity grid, a microgrid is able to continue to supply power to its
customers without any interruption when there is an outage
on the utility gird, leading to improved energy reliability [5].
Because of these advantages, the study on microgrids has
never been more popular [6].

Comparing with intentional islanding, i.e., a microgrid
intentionally separates itself from the utility grid in case
of foreseeable utility disturbances, unintentional islanding,
i.e., a microgrid unintentionally separates itself from the util-
ity grid driven by unforeseeable utility disturbances, is more
important for reliability improvement since the vast major-
ity of utility disturbances are unpredictable. Generally, a
microgrid imports/exports power from/to the distribution
grid in grid-connected mode, and this power is instanta-
neously forced to be zero when unintentional islanding hap-
pens. In this circumstance, the islanding process needs quick
adjustment of the already committed DGs and ESSs, even
load shedding as the last resort to mitigate the power imbal-
ance caused by unintentional islanding and rebuild the bal-
ance between load and generation. To reduce or avoid load
shedding and have the microgrid being prepared for possible
unintentional islanding, certain amount of DGs should be
committed and the ESSs should be charged to certain level.
Nevertheless, there are two aspects of uncertainties associ-
ated with the unintentional islanding of microgrids. First, the
occurrence time and duration of the unintentional islanding
are uncertain. Second, the uncertainties in the forecasting
of renewable generation and demand makes the problem
more challenging. Therefore, development of new schedul-
ing methods considering stochastic unintentional islanding
conditions of microgrids and probabilistic characteristics of
load and renewable generation is necessary for achieving the
reliability benefit of microgrids.

So far, research work on microgrid scheduling consider-
ing the stochastic unintentional islanding conditions are still
insufficient. In [7], an efficient joint implementation of Cuttle
Fish Algorithm (CFA) and Crow Search Algorithm (CSA)
method is proposed for optimum scheduling of microgrids
with multi-period islanding restrictions. In [8], the probabil-
ity that the microgrid is able to operate in islanded mode
is formulated as a chance constraint. In [9], a probabilis-
tic model to determine the spinning reserve requirement of
microgrids is proposed. The uncertainty of contingency prob-
ability has been considered. In [10], the islanding capability

VOLUME 10, 2022 48837



G. Liu et al.: Robust Microgrid Scheduling Considering Unintentional Islanding Conditions

of a microgrid is modeled as a chance constraint and
integrated into the original microgrid scheduling problem.
The chance-constrained programming model is extended to
include the reconfiguration of microgrids in [11]. In [12],
a stochastic programming model is formulated for microgrid
scheduling considering unscheduled islanding periods. The
probability distribution of islanding duration is estimated and
modeled by a scenario set. Nevertheless, the formulation of
chance constraints needs probability distribution of renew-
able generation [8]–[11], and the generation of scenario set
needs probability distribution function of unscheduled island-
ing periods [12]. In practice, information on both of them are
very limited.

Unlike stochastic optimization, robust optimization only
needs the upper and lower boundaries of the stochastic
variables, neglecting their probability distributions and cor-
relations. Thus, robust optimization has gained increasing
popularity recently. In [13], a robust optimization model is
proposed to quantify the reserve requirements of microgrids.
Considering resiliency requirements, another robust opti-
mization model is proposed for microgrid scheduling in [14].
However, both the occurrence time and duration of the unin-
tentional islanding have been neglected. In [15], the multi-
period islanding constraints are included in the microgrid
scheduling model. The result guarantees microgrids could
operate in islanded mode for certain hours specified by the
microgrid operator. However, the occurrence time of the unin-
tentional islanding has to be enumerated and the islanding
duration has to be pre-set. The uncertainties of renewable
generation and demand are considered in [16]. In [17], the
uncertainties of renewable generation and grid-connection
condition are included in the microgrid scheduling problem
by formulating a two-stage robust optimization model. How-
ever, the uncertainty of load and the choice of load shedding
have been ignored.

In this paper, given the stochastic unintentional islanding
conditions of microgrids, a robust optimization model is
proposed for optimal microgrid scheduling. The proposed
model is guaranteed to serve local loads continuously through
rapidly adjusting the output of committed DGs and ESSs
whenever unintentional islanding happens. To capture the
uncertainties in renewable generation, demand and the occur-
rence time and duration of the unintentional islanding, a two-
stage adaptive robust optimization is proposed to optimize the
objective function in the worst case scenario of the modeled
uncertainties. The proposed optimization is solved with the
column and constraint generation (C&CG) algorithm. The
result obtained ensures robust microgrid operation in con-
sideration of all possible realization of renewable generation,
demand, and unintentional islanding conditions. The contri-
butions of this work are twofold:

1) Considering the uncertainties of renewable generation,
load and occurrence time and duration of the uninten-
tional islanding, a two-stage robust optimization model
is proposed. Using this model, microgrids are guaran-
teed to serve local loads continuously through rapidly

adjusting the output of committed DGs and ESSs in
case of unintentional islanding.

2) The optimal schedule obtained by the proposed robust
optimization and stochastic optimization are tested
through Monte Carlo simulation. The results demon-
strate the robustness of the solution of proposed robust
optimization.

This paper is structured as follows: both stochastic and robust
models for microgrid scheduling considering the stochastic
unintentional islanding conditions are presented in Section II.
Section III describes the solution methodology. Section IV
gives the numerical simulation results and analysis. The paper
is concluded with major findings in Section V.

II. MATHEMATICAL FORMULATIONS
A. MICROGRID COMPONENTS
A microgrid is consisted of various distributed generators
(DGs), ESSs and energy consumers. In practice, a microgrid
central control (MCC) monitors the system running status
and sends optimize dispatch orders to corresponding com-
ponents. The DGs in a microgrid simply fall into two cate-
gories: dispatchable and undispatchable. Dispatchable DGs,
e.g., small hydros, fuel cells, and microturbines, could be
dispatched on demand at the request ofMCC based onmarket
needs or operator’s preference. By contrast, undispatchable
DGs, mainly referring to wind power and PV, are subject to
uncertain nature of weather conditions, thus cannot be com-
pletely controlled by the MCC. In fact, wind power and PV
power can only be forecasted with limited accuracy. For wind
power, the hour-ahead forecast error could be made below
10%. However, the day-ahead forecast error is generally over
20% [18], [19]. As to PV power forecasting, the problem
is getting more difficult due to random cloud coverage and
changing ambient temperature, both of which affect the PV
generation significantly [20], [21]. To mitigate the uncer-
tainties of renewables, ESSs are normally installed on-site.
Without loss of generality, both wind and PV power are
assumed independent and bounded random variables in this
work. The goal here is to guarantee continuous power supply
of local demands through seamless islanding considering the
uncertainties of renewables, load, and the occurrence time
and duration of the unintentional islanding.

B. DETERMINISTIC OPTIMIZATION
In this subsection, the microgrid scheduling problem is mod-
eled as a deterministic optimization model as in (1) - (9).
The model is targeted to minimize total operating cost of
the microgrid as shown in (1), including start-up, shut-down,
fixed operation and maintenance (O&M), and variable O&M
cost of DGs (as in the first line), cost of buying/selling power
from/to utility grid (as in the second line), degradation cost
of ESSs (as in the third line), and cost associated with load
shedding (as in the fourth line).

min
NT∑
t=1

NG∑
i=1

[
SUit + S

D
it + C

ON
it uit + λitPit

]
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+

NT∑
t=1

λPCCt PPCCt

+

NT∑
t=1

NB∑
b=1

Cbt
(
PCbt + P

D
bt

)

+

NT∑
t=1

ND∑
d=1

CLS
dt P

LS
dt (1)

s.t. Pmin
i uit ≤ Pit ≤ Pmax

i uit ∀i, ∀t (2)

0 ≤ PCbt ≤ P
C,max
b ∀b, ∀t (3)

0 ≤ PDbt ≤ P
D,max
b ∀b, ∀t (4)

SOCbt = SOCb,t−1 + PCbtη
C
b4t − P

D
bt

1

ηDb
4t ∀b, ∀t

(5)

SOCmin
bt ≤ SOCbt ≤ SOC

max
bt ∀b, ∀t (6)∑NG

i=1
Pit +

∑NW

w=1
PWwt +

∑NPV

v=1
PPVvt + P

PCC
t

+

∑NB

b=1
PDbt −

∑NB

b=1
PCbt=

∑ND

d=1

(
PLdt−P

LS
dt

)
∀t

(7)

− ZG
t P

PCC,max
t ≤ PPCCt ≤ ZG

t P
PCC,max
t ∀t (8)

0 ≤ PLSdt ≤ αdt%
ˆPLdt ∀d, ∀t (9)

The constraints of the microgrid scheduling problem
includes power limits of DGs as in (2), charging and dis-
charging power limits of ESSs as in (3) and (4), maximum
and minimum state of charge (SOC) of ESSs as in (6), power
limits at PCC as in (8), and maximum percentage of load
shedding of each demand enforced by constraint (9). In addi-
tion, the SOC of an ESS is defined as a function its charging
and discharging power as in (5). Due to the relatively small
capacities of the DGs, the ramping rate limits of DGs have
been neglected. Please refer to [22] for more detailed model
of DGs. It should be noted that an optimal solution cannot
have ESS charging and discharging at the same time due
to the unnecessary losses caused by simultaneous charging
and discharging. The total generation and load balance is
guaranteed by equation (7). Note that ZG

t in (8) is a binary
indicator of grid-connection condition, which forces the PCC
power to be zero if the microgrid is islanded.

The presented deterministic optimization model for micro-
grid scheduling is in mixed-integer linear form except SUit
and SDit , which are the start-up and shut-down costs of DGs,
separately. Nevertheless, both SUit and SDit could be easily
reformulated into mixed-integer linear form. Please refer
to [23] for details.

C. STOCHASTIC OPTIMIZATION
The deterministic optimization model presented in subsec-
tion II-B is extended into a two-stage stochastic optimization
by considering various realization of renewable generation,
load and grid-connection condition. In the first stage, the
commitment status of DGs are determined before the realiza-
tion of uncertainties and kept the same value for all scenarios.

In the second stage, the uncertainties of renewable generation,
load and grid-connection condition are realized into various
scenarios. For each scenario, the PCC power, DGs and ESSs
power, and load shedding are optimized correspondingly. The
stochastic optimization model is presented as in (10) - (18).

min
NT∑
t=1

NG∑
i=1

(
SUit + S

D
it + C

ON
it uit

)

+

Ns∑
s=1

π s

[ NT∑
t=1

NG∑
i=1

λitPsit +
NT∑
t=1

λPCCt PPCC,st

+

NT∑
t=1

NB∑
b=1

Cbt
(
PC,sbt + P

D,s
bt

)

+

NT∑
t=1

ND∑
d=1

CLS,s
dt PLS,sdt

]
(10)

s.t. Pmin
i uit ≤ Psit ≤ P

max
i uit ∀i, ∀t, ∀s (11)

0 ≤ PC,sbt ≤ P
C,max
b ∀b, ∀t, ∀s (12)

0 ≤ PD,sbt ≤ P
D,max
b ∀b, ∀t, ∀s (13)

SOCs
bt = SOCs

b,t−1 + P
C,s
bt η

C
b4t − P

D,s
bt

1

ηDb
4t

∀b, ∀t, ∀s (14)

SOCmin
bt ≤ SOC

s
bt ≤ SOC

max
bt ∀b, ∀t, ∀s (15)

NG∑
i=1

Psit +
NW∑
w=1

PW,swt +

NPV∑
v=1

PPV,svt + P
PCC,s
t

+

NB∑
b=1

(
PD,sbt − P

C,s
bt

)
=

ND∑
d=1

(
PL,sdt − P

LS,s
dt

)
(16)

− ZG,s
t PPCC,max

t ≤ PPCC,st ≤ ZG,s
t PPCC,max

t ∀t, ∀s

(17)

0 ≤ PLS,sdt ≤ αdt%
ˆPLdt ∀d, ∀t, ∀s (18)

In the stochastic optimizationmodel, the objective function
is to minimize the expectation of the overall cost considering
all possible scenarios. The constraints are basically the same
as those of deterministic optimization model, but they have
to be satisfied for each individual scenario. In specific, the
commitment status of DGs are determined in the first stage
and kept the same for all scenarios in the second stage.
The second stage decisions, i.e., PCC power, output of DGs,
charging/discharging power of ESSs and amount of load
shedding, are changing along with the realization of renew-
able generation, load and grid-connection condition in each
scenario. The stochastic model is reduced to deterministic
model in the particular case when there is only one scenario.
PWwt , P

PV
vt , P

L
dt and ZG

t are modeled as random vari-
ables with known probability distribution functions, based
on which a set of scenarios is constructed through Monte
Carlo simulation. Traditionally, load PLdt could be modeled
as Gaussian distribution [24], [25]. Wind power PWwt is mod-
eled as Gaussian distribution or Weibull distribution [26].
PV output PPVvt is modeled as Gaussian distribution or β
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distribution [27]. The grid-connection condition ZG
t is mod-

eled as Bernoulli distribution [17]. An appropriate scenario
set is critical to the efficiency of stochastic model. With more
scenarios, the scenario set will be more precise. However, the
computational intensity will be increased as well. To reduce
the computational burden of the problem, backward scenario
reduction has been commonly utilized to cut down the num-
ber of scenarios [28].

D. ROBUST OPTIMIZATION
The deterministic optimization model presented in subsec-
tion II-B is extended into a two-stage robust optimization by
considering the variation of renewable generation, load and
grid-connection condition. Unlike stochastic optimization,
robust optimization doesn’t require the probability distribu-
tions and correlations of the stochastic variables.Without loss
of generality, wind power PWwt , PV power PPVvt and load PLdt
are assumed independent, symmetric and continuous random
variables as in (19). Meanwhile, the grid-connection condi-
tion ZG

t is assumed binary random variable.

PWwt ∈
[
ˆPWwt − δ

W
wt ,
ˆPWwt + δ

W
wt

]
, δWwt ≥ 0

PPVvt ∈
[
ˆPPVvt − δ

PV
vt ,

ˆPPVvt + δ
PV
vt

]
, δPVvt ≥ 0

PLdt ∈
[
ˆPLdt − δ

L
dt ,
ˆPLdt + δ

L
dt

]
, δLdt ≥ 0

ZG
t ∈ {0, 1} ,

(19)

The robust optimizationmodel is formulated in ‘‘min-max-
min’’ form, as presented in (20) - (23). Similar to stochastic
optimization, the commitment status of DGs are determined
in the first stage before the realization of uncertainties and
kept the same value for all possible realization of uncertain-
ties. The second stage decisions, i.e., the PCC power, DGs
and ESSs power, and load shedding, are changing based on
the worst realization of renewable generation, load and grid-
connection condition. By searching and optimizing the worst
scenario, the proposed robust optimization guarantees the
feasibility and bottom line of the solution under all possible
realization of uncertainties.

min
u∈U

NT∑
t=1

NG∑
i=1

SUit + S
D
it + S

ON
it

+ max
ZG,PW,PPV,PL∈W

min
P,PPCC,PC,PD,PLS∈X{ NT∑

t=1

NG∑
i=1

λitPit +
NT∑
t=1

λPCCt PPCCt

++

NT∑
t=1

NB∑
b=1

Cbt
(
PCbt + P

D
bt

)
NT∑
t=1

ND∑
d=1

CLS
dt P

LS
dt

}
(20)

s.t. U = {u : uit ∈ {0, 1} ,∀i, t; } (21)

W =
{
PW
: PWwt =

ˆPWwt − µwtδ
W
wt + µwtδ

W
wt , ∀w, t

PPV
: PPVvt =

ˆPPVvt − µvtδ
PV
vt + µvtδ

PV
vt , ∀v, t

PL
: PLdt =

ˆPLdt − µdtδ
L
dt + µdtδ

L
dt , ∀d, t

µwt , µwt , µvt , µvt , µdt , µdt ∈ [0, 1] , ∀w, v, d, t
NW∑
w=1

(
µwt + µwt

)
+

NPV∑
v=1

(
µvt + µvt

)

+

ND∑
d=1

(
µdt + µdt

)
≤ 0P

t , ∀t

ZG
:

NT∑
t=1

(
1− ZG

t

)
≤ 0IS, ZG

t ∈ {0, 1} , ∀t

ZG
t ≤ 1− (ZG

t−1 − Z
G
t ),

∀t ∈
[
1,min

(
NT , t + 0IS

− 1
)]}

(22)

X =
{
P,PPCC,PC,PD,PLS

: (2)-(9)
}

(23)

As to the constraints, W represents the modeled uncer-
tainty. InW, wind power, PV power and loads are all modeled
as bounded intervals, where µ and µ are control variables
for positive and negative forecast errors, separately. These
forecast errors are aggregated and controlled through a robust
control parameter 0P

t ∈ [0, NW + NPV + ND]. Given a 0P
t ,

the worst scenario happens when
⌊
0P
t
⌋
of forecast error con-

trol variables ( µ or µ) equal 1, i.e.,
⌊
0P
t
⌋
of the uncertainties

reach their upper bounds or lower bounds, and one of forecast
error control variables (µ orµ) equals

(
0P
t −

⌊
0P
t
⌋)
, i.e., one

of the uncertainties varies up to
(
0P
t −

⌊
0P
t
⌋)
δ. With0P

t = 0,
no forecast errors are considered, i.e., the robust optimization
model is reduced to deterministic model. With 0P

t = NW +
NPV +ND, all uncertainties reach their upper bounds or lower
bounds, i.e., the solution is most conservative. By setting
different values for the robust control parameter 0P

t , the
microgrid controller could get solutions with various degree
of conservatism.

Similarly, 0IS is a robust control parameter for the unin-
tentional islanding condition, which takes value in [0, NT ].
Given a 0IS, the solution is guaranteed to be feasible and
bottom line for all possible scenarios in which up to 0IS

time intervals are islanded. If 0IS
= 0, all ZG

t will be 1,
i.e., no unintentional islanding happens, while if 0IS

= NT ,
the microgrid is islanded all the time, leading to the most
conservative solution. The occurrence time and the duration
of unintentional islanding is modeled through binary vari-
able ZG

t . The occurrence time of unintentional islanding is
simply anytime from the first time interval to the last time
interval. The duration of unintentional islanding is limited by
the summation of 1 − ZG

t . Without loss of generality, it is
also assumed that the microgrid will be reconnected to the
utility grid until the utility grid has been completely restored
or the extreme event has passed. Thus, only one unintentional
islanding incident happens during the scheduling horizon.

U represents the feasible region for the first stage decisions,
i.e., DG commitment status, and X represents the feasible
set for the second stage decisions, i.e., the power at PCC,
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output of DGs and ESSs, and load shedding. In specific,
constraints (2)-(9) of deterministic optimization model are
included in X. It should also be noted that the first stage
decisions hold for all scenarios, but the second stage decisions
are only for the identified worst scenario.

In reality, the microgrid energy management is performed
in two steps. First, the proposed two-stage robust microgrid
scheduling model is solved to determine the day-ahead com-
mitment status of DGs without knowing the grid-connection
condition. Then, in the second step, the grid-connection con-
dition is revealed, the microgrid dispatches committed DGs,
ESSs and responsive loads to meet the power balance in real-
time. The two-stage robust optimization model is particularly
designed to hedge against the uncertainty in grid-connection
condition and guarantee the microgrid operating continu-
ously when switching between grid-connected and islanded
modes.

III. SOLUTION ALGORITHM
The proposed tri-level ‘‘min-max-min’’ model in (20)-(23) is
presented in a compact matrix form as in (24) to (25).

min
u∈U

{
AT0u+ max

w∈W
min

x∈X(u,w)
BT0w+ C

T
0 x
}

(24)

X (u,w) =
{
x : AT1u+ B

T
1w+ C

T
1 x = q1,

AT2u+ B
T
2w+ C

T
2 x ≤ q2;

}
(25)

Note that the three optimization levels are nested together.
To solve this problem, the C&CG algorithm and Benders
decomposition algorithm have been investigated in [29]
and [30], separately. The C&CG algorithm is employed to
solve the proposed robust optimization in this work due to
proven fast convergence [29].

First of all, according to the Karush-Kuhn-Tucker (KKT)
conditions, the innermost ‘‘min’’ optimization is reformu-
lated as complementary constraints. Since this problem is
linear, strong duality holds. The inner ‘‘max-min’’ problem
becomes as follows:

max
w∈W

BT0w+ C
T
0 x (26)

s.t. AT1u
k
+ BT1w+ C

T
1 x = q1 (27)

CT
0 + β

TC1 + γ
TC2 = 0 (28)

0 ≤ q2 − AT2u
k
− BT2w− C

T
2 x⊥γ ≥ 0 (29)

where β is dual variable of equalities in (25), and γ is dual
variable of inequalities. By Big-M method [31], the comple-
mentary constraint (29) could be equivalently transformed
into (30) and (31) by introducing a binary variable δ and a
large positive constant M.

0 ≤ q2 − AT2u
k
− BT2w− C

T
2 x ≤ Mδ (30)

0 ≤ γ ≤ M (1− δ) (31)

Given DG commitment status uk in iteration k , the ‘‘max’’
problem in (26) - (29) determines the worst scenario and
calculates its objective value as Q(uk ). Thus, AT0u

k
+Q(uk )

FIGURE 1. Solution process of the C&CG algorithm.

is the objective value of the tri-level optimization problem
with given uk . The true objective value of the tri-level opti-
mization problem should be less than AT0u

k
+Q(uk ) given

the feasible region of u. Therefore, the ‘‘max’’ problem
in (26) - (29) generates an upper bound for the tri-level
optimization problem. Note that the ‘‘max’’ problem is a
subproblem with given uk .

Based on the worst scenarios determined by the subprob-
lem in (26) - (29), corresponding primal cuts are generated.
By adding these primal cuts generated by the subproblem as
constraints, the master problem in iteration k is updated as
in (32)-(35).

min
u∈U,xl

AT0u+ ξ (32)

s.t. ξ ≥ BT0w
l
+ CT

0 x
l
∀l ≤ k (33)

AT1u+ B
T
1w

l
+ CT

1 x
l
= q1 ∀l ≤ k (34)

AT2u+ B
T
2w

l
+ CT

2 x
l
≤ q2 ∀l ≤ k (35)

where wl is the worst scenario of uncertainties determined
by subproblem (26) - (29) in the l-th iteration. xl is the
second stage decisions in this worst scenario. The master
problem in (32) - (35) generates a lower bound for the tri-level
optimization problem since the worst scenarios wl are partial
enumerations of the uncertainty region W. In the C&CG
algorithm, the master problem and subproblem are solved
iteratively to narrow the gap between the upper and lower
bounds until convergence. Fig. 1 presents the flow chart of
the solution process.

It should be noted that the uncertainties of the parame-
ters related to the cost have been neglected in the study.
Considering these uncertainties, the term CT

0 x in (26) will
be bilinear. As a result, the subproblem becomes a bilinear
problem. An outer approximation (OA) algorithm could be
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FIGURE 2. Modified ORNL DECC microgrid system.

TABLE 1. Dispatchable DG parameters.

TABLE 2. Battery parameters.

used to solve the bilinear programming [32], which linearizes
the bilinear termswith respect to its values in the last iteration.

IV. CASE STUDIES
A. TEST SYSTEM DATA
The proposed model for microgrid scheduling consider-
ing the stochastic unintentional islanding conditions was
demonstrated using a modified Oak Ridge National Labora-
tory (ORNL) Distributed Energy Control and Communica-
tion (DECC) microgrid test system. This system is consisted
of multiple dispatchable DGs, undispatchable DGs (i.e., wind
turbine and PV panel) and a battery, as shown in Fig. 2.
The parameters of dispatchable DGs are listed in Table 1.

The parameters of the battery are listed in Table 2. Note that
these DGs and the battery are the dispatchable resources in
the microgrid.

A wind turbine with 60 kW rated capacity is installed
in the microgrid. The wind power forecasted for the next
24-hour scheduling horizon are listed in Table 3. For the case
of robust optimization, the forecast error of wind power is
assumed ± 35%. The microgrid also has 50 kW PV panels
installed. Similarly, the PV power forecasted for the next

TABLE 3. Forecasted wind power.

TABLE 4. Forecasted PV power.

TABLE 5. Forecasted total load.

TABLE 6. Forecasted utility rates.

24-hour scheduling horizon are listed in Table 4. For the
case of robust optimization, the forecast error of PV power
is also assumed ± 35%. Note that wind turbine and PV are
the undispatchable resources in the microgrid.

The total load of the microgrid is forecasted as in Table 5.
These forecasted values are equally divided into 2 loads.
The maximum percentage of allowed shedding for both
loads are set as 80%. The value of lost load (VOLL) is
set as 2 $/kWh and 1.5 $/kWh, separately. For the case of
robust optimization, the forecast errors of both loads are
assumed ± 9%.
The forecasted hourly utility rates are listed in Table 6.

For simplicity, the forecast errors of utility rates have been
neglected. The maximum power at PCC is set as 200 kW.
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FIGURE 3. Comparison of total capacity of committed DGs and worst scenario of unintentional islanding condition under various values of γ IS.

The scheduling horizon is assumed one day, i.e., 24 hours,
with hourly time intervals. The optimization model is pro-
grammed inMATLAB and solved by themixed-integer linear
programming (MILP) solver CPLEX 12.6 [33]. By setting the
maximum allowed gap between the upper and lower bounds
as 0.1, it generally takes less than 10 iterations for the C&CG
algorithm to converge.

B. EFFECTS OF UNINTENTIONAL ISLANDING CONDITIONS
For simplicity, the robust control parameter for the uninten-
tional islanding condition is normalized as γ IS

= 0IS/NT .
Thus, γ IS

= 0 means no unintentional islanding is
allowed and γ IS

= 1 means the microgrid is islanded
all the time. Similarly, we normalized the robust control
parameter for renewable generation and load, as γ P =

0P
t / (NW + NPV + ND) and assume γ P is same for all time

intervals. Therefore, γ P = 0 indicates no uncertainties of
renewable generation and load are considered. On the con-
trary, γ P = 1means all uncertainties of renewable generation
and load are considered, i.e., the solution is robust to all
uncertainties.

Setting γ P = 0.5, the results of proposed adaptive robust
optimization with various robust control levels for the unin-
tentional islanding condition are compared in this subsection.
The total capacity of committed DGs and worst unintentional
islanding condition under various values of γ IS are compared
in Fig. 3. As can be seen, no DGs are committed when
γ IS
= 0, due to the relatively low utility rate comparing

with generation cost of DGs. As γ IS increase, longer dura-
tion of unintentional islanding is taken into account. Thus,
more committed DGs are needed to ensure the microgrid be
prepared for all possible islanding events. When γ IS

= 1, all
DGs are committed.

The total operating cost and amount of load shedding
under various values of γ IS are compared in Fig. 4. With γ IS

increases, more DGs are committed. Meanwhile, more loads
are served byDGs tomitigate the impact of lost PCC power in
case of unintentional islanding. Thus, the total cost increases,
i.e., the reliability of microgrids is improved at the cost of
increased operating cost. If committed DGs and ESSs are not
sufficient, certain loads are shed as the last resort. As shown
in Fig. 4b, the amount of load shedding increases rapidly as
the islanding condition is considered at first. However, the
growth of load shedding slows down as γ IS further increases.

C. CONVERGENCE OF C&CG ALGORITHM
The convergence process of C&CG algorithm with different
robust levels is shown in this subsection. The lower and upper
bounds calculated in each iteration are shown in Fig. 5a, when
γ IS
= 0.25 and γ P

= 0, i.e., only uncertainties of unin-
tentional islanding condition were considered. Considering
the uncertainties of renewable generation and load, the lower
and upper bounds calculated in each iteration are shown in
Fig. 5b, when γ IS

= 0.25 and γ P
= 0.5. The algorithm

converges after 9 iterations in both cases. Generally, the
algorithm converges in less than 10 iterations.
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FIGURE 4. Comparison of total operating cost and amount of load
shedding under various values of γ IS.

D. SOLUTIONS OF C&CG ALGORITHM
The robust optimal dispatch and the worst scenario of
unintentional islanding condition when γ IS

= 0.25 and
γ P
= 0.5 are shown in Fig. 6. As can be seen, in the

worst scenario, the microgrid is islanded from hour 15 to
hour 20, i.e., the PCC power is forced to be 0 during these
hours. Meanwhile, the output power of DGs increases and
the battery discharges. Also, load shedding is performed
during certain hours. The PCC power, output power of
DGs, battery SOC and load shedding decisions are shown
in Fig. 6.

E. COMPARISON WITH STOCHASTIC OPTIMIZATION
In this subsection, the results of robust optimization and
stochastic optimization are evaluated and compared under
the same condition. For easy illustration, the uncertainties
of renewable generation and load were ignored at first. The
maximum islanding period is assumed 6 hours, i.e., 0IS

=

6 hours. For stochastic optimization, 100 scenarios are gener-
ated to model the unintentional islanding condition. For each
scenario, the occurrence time of unintentional islanding are

FIGURE 5. The convergence of the C&CG algorithm with various values of
γ IS and γ P.

FIGURE 6. PCC power, output power of DGs, battery SOC and load
shedding decisions under γ IS = 0.25, γ P = 0.5.

assumed uniform distribution along the scheduling horizon.
Once the occurrence time is determined, the duration of
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the unintentional islanding are assumed uniform distribution
between 1 and0IS.With these scenarios, the commitment sta-
tus of DGs are determined by solving the stochastic optimiza-
tion model. For robust optimization, we set γ IS

= 0IS/NT =
0.25 and γ P

= 0, and solve the robust optimization problem
to determine the commitment status of DGs.

Next, a test set of 1000 scenarios is generated using the
same distribution. For each test scenario, the first stage deci-
sions, i.e., the commitment status of DGs, of both robust
optimization and stochastic optimization are evaluated. The
total operating cost and load shedding cost are collected. The
minimum, maximum and average value of the total operating
cost of both robust optimization and stochastic optimization
are compared and shown in Fig. 7a. As can be seen, the
stochastic optimization outperforms robust optimization in
terms of average cost. However, the cost of stochastic opti-
mization in the worst scenario is much higher than that of the
robust optimization.

The minimum, maximum and average value of the load
shedding cost of both robust optimization and stochastic opti-
mization are compared and shown in Fig. 8b. As can be seen,
the robust optimization outperforms stochastic optimization
in terms of both average load shedding cost and the load
shedding cost in the worst scenario.

It should be noted that load shedding cost is actually
included in the total operating cost. From average point of
view, the load shedding cost only takes a small percentage of
the total operating cost. However, this percentage is increased
significantly in the worst scenario, in which massive load
shedding happens. In other words, the huge increase of total
operating cost in the worst scenario is largely due to the
significant increase of load shedding cost.

To consider the uncertainties of both renewable generation
and load, wind power PWwt , PV power PPVvt and load PLdt
are assumed independent, symmetric and bounded random
variables as in (19). For robust optimization, we set γ IS

=

0.25 and γ P
= 0.5, and solve the robust optimization problem

to determine the commitment status of DGs. For stochastic
optimization, 100 scenarios are generated to model the unin-
tentional islanding condition and uncertainties of renewable
generation and load. For each scenario, the occurrence time
and duration of unintentional islanding are generated using
the same method. The loads are assumed normal distribution
with mean ˆPLdt and standard deviation δLdt/3. Thus, P

L
dt falls

into the interval
[
ˆPLdt − δ

L
dt ,
ˆPLdt + δ

L
dt

]
with a probability

of 99.7% based on the three-sigma rule of thumb (or 3σ
rule). Similarly, the PV and wind power are also assumed
normal distribution with mean ˆPPVvt and ˆPWvt , and standard
deviation δPVvt /3 and δWvt /3, separately. With these scenarios,
the commitment status of DGs are determined by solving the
stochastic optimization model.

Next, a test set of 1000 scenarios is generated using the
same distribution. For each test scenario, the first stage deci-
sions, i.e., the commitment status of DGs, of both robust
optimization and stochastic optimization are evaluated.

FIGURE 7. Comparison of total operating cost and load shedding cost of
stochastic and robust optimization with γ IS = 0.25 and γ P = 0.

The total operating cost and load shedding cost are collected.
The minimum, maximum and average value of the total
operating cost of both robust optimization and stochastic
optimization are compared and shown in Fig. 8a. As can
be seen, the average cost of robust optimization increases
as we considered uncertainties of both renewable generation
and load, while the average cost of stochastic optimization
remains the same. In addition, the stochastic optimization
outperforms robust optimization in terms of average cost.
Nevertheless, the cost of stochastic optimization in the worst
scenario is much higher than that of the robust optimization.

The minimum, maximum and average value of the load
shedding cost of both robust optimization and stochastic
optimization are compared and shown in Fig. 7b. As can be
seen, the average load shedding cost of robust optimization
increases as the more uncertainties are considered. Still, the
proposed robust optimization outperforms stochastic opti-
mization in terms of both average load shedding cost and the
load shedding cost in the worst scenario.

It should be noted that the robust optimization tends to
take a conservative action to handle the modeled uncertainties
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FIGURE 8. Comparison of total operating cost and load shedding cost of
stochastic and robust approach with γ IS = 0.25 and γ P = 0.5.

by turning on more DGs. Thus, stochastic optimization usu-
ally outperforms robust optimization in terms of average
cost, as shown in Fig. 7a and Fig. 8a. For the same reason,
robust optimization outperforms stochastic optimization in
terms of average load shedding cost, as shown in Fig. 8b
and Fig. 7b. In addition, stochastic optimization is subject
to incur huge load shedding in high impact, low proba-
bility (HILP) scenarios. In contrast, robust optimization is
designed to optimize the cost in the worst scenario, thus
can significantly improve the system performance in HILP
scenarios, i.e., reduce the load shedding in the worst scenario.
In other words, robust optimization tends to sacrifice certain
optimality for resilience.

Nevertheless, with properly chosen robust control param-
eters, the solution obtained by robust optimization can
ensure both resilience and near-optimality. By the cen-
tral limit theorem, when a large number (N ) of indepen-
dent random variables are aggregated, the volatility scales
according to O

(√
N
)
. Therefore, a proper level of the nor-

malized robust control parameter should be chosen close
to O

(√
N
)
/N [30]. An advanced approach, which reduces

conservativeness by removing the ineffective parts of the
uncertainty set, was recently proposed in [34].

V. CONCLUSION
Considering the stochastic unintentional islanding condi-
tions, a novel microgrid scheduling model is proposed in this
work. The proposed model is formulated as a two-stage adap-
tive robust optimization. The C&CG algorithm is employed
to solve the formulated optimization. The solution ensures
robust microgrid operation in consideration of all possible
realization of renewable generation, demand and uninten-
tional islanding condition. Numerical simulations on a mod-
ified microgrid test system verified the proposed model.
In particular, the robustness of the solution of proposed
optimization has been demonstrated by comparing with the
results of stochastic optimization.

Future works include expanding islanding capability from
simple power balance constraint to power flow constraint
and dynamic stability constraint. In addition, distributed
optimization algorithms, which could preserve privacy of
customers and enable plug-and-play of microgrids, will be
investigated.
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