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Abstract—The rapidly increasing penetration of inverter-

based resources into a power transmission network requires more 

sophisticated voltage control strategies considering their inherent 

output variabilities. In addition, faults and load variations affect 

the voltage profile over the power network. This paper proposes a 

Primal Dual Gradient Dynamics based optimal distributed voltage 

control approach that optimizes outputs of distributed reactive 

power sources to maintain an acceptable voltage profile while 

preserving operational limits. Case studies of this new approach 

on IEEE test systems have verified its effectiveness. 
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I. INTRODUCTION  

The operating condition of a power transmission network 
continuously changes as a result of load variations, disturbances 
and other operational uncertainties, leading to voltage 
fluctuation across all buses of the network. So, facing such 
traditional challenges and the emerging challenges due to large-
scale wind and solar integration, existing voltage control 
strategies need to be improved. There have been works 
addressing new challenges in power distribution systems but 
changes on existing voltage control strategies for transmission 
systems are more difficult [1]. 

Power systems have extensively implemented centralized 
schemes for many optimization and control functions, in which 
a central controller collects measurements, carries out 
computations and issues new commands of control [2]. In such 
a scheme, all the buses are required to communicate with a 
central controller when communication difficulties like delays, 
limited bandwidth, node failures, etc. are present [3]. 
Comparatively, a distributed control scheme employs 
controllers at multiple buses spreading out through the entire 
network, in which communication is limited to a set of neighbors 
of each bus. Therefore, less communication infrastructure, 
enhanced cybersecurity, robustness to control failure, and the 
ability to apply parallel computing are various potential benefits 
of distributed algorithms versus centralized ones [2]. 

A common approach to implement voltage control is 
applying optimal power flow with constraints imposed on bus 
voltages and reactive powers.  After solving the problem, the 
reactive power injections at buses are adjusted. Therefore, this 
approach is using a feedforward optimization scheme, where the 
disturbance is presumed to be explicitly known for the 
controller. In contrast, there is no need to assume this explicit 
knowledge in feedback optimization, where the controller act 
based on measured data. 

Although a power system has a wide range of acceptable 
operating conditions in which voltages and reactive powers can 
vary while still satisfying the limits, some of these conditions are 
better than the others if we consider the operational cost, 
transmission loss and the loss of opportunity. An example of the 
last is related to inverter-based renewable energy sources. When 
their inverters are expected to provide more reactive powers, a 
price is yielded since it is more economical for them to inject 
more real powers than reactive powers.           

In this work, we exploit the feedback optimization and the 
distributed control strategy to propose continuous optimal 
feedback voltage controller, in which each bus locally 
communicate with its neighbors that are physically connected to 
share local measurements enabling the controller to adjust its 
reactive power output using the Primal Dual Gradient Dynamics 
(PDGD) algorithm. Ref. [3] has applied PDGD to optimal 
distributed feedback voltage control for power distribution 
systems, in which the radial structure of a distribution network 
is utilized to simplify the model of power flows for control. This 
paper will focus on a power transmission network having a 
meshed structure. The PDGD is applied in the proposed optimal 
distributed voltage controller to exploit the network sparsity to 
optimize the problem completely in distributed fashion. The 
controller will (1) minimize the operational cost, (2) keep 
voltages in acceptable ranges, and (3) satisfy reactive power 
limits. 

The use of PDGD is motivated by the structure of the 
optimization problems, which provides the Lagrangian saddle-
point dynamics an approach to be solved in distributed fashion. 
Hence, the dynamics is common in network optimization [4]. In 
[5], the authors use the PDGD distributed optimizer to solve 
primary frequency regulation load control problem. In [6], an 
energy-based approach is presented to study the stability of 
power systems coupled with market dynamics, the PDGD is 
used to form distributed dynamic optimization algorithm. 

The rest of the paper is organized as follows: Section II 
introduces the power system model and provides a detailed 
discussion of the proposed optimal distributed feedback voltage 
controller. The case studies on IEEE benchmark systems are 
presented in section III. Finally, conclusions are drawn in 
section IV. 

II. PROBLEM FORMULATION 

A. Bus Injection Mode 

In this paper, we consider bus injection model to represent 
the transmission network. Where power flow equations of an N  
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bus system can be written as follows in the polar form: 
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where 𝑃𝑘 and 𝑄𝑘 are the real and reactive powers injected into 
bus k. 𝑉𝑘  and 𝛿𝑘 are the voltage magnitude and phase angle at 
bus 𝑘. 𝑌𝑘𝑛  and 𝜃𝑘𝑛 are the magnitude and phase angle of each 
element of admittance matrix. To linearize these equations, the 
Taylor’s series expansion of a multivariable function can be 
applied to result in first order linear equations: 
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where the power mismatch on the right-hand side is 
approximated by the Jacobian matrix multiplied by the deviation 
of the state vector. It is clear the Jacobian matrix is not constant 
and to avoid some computations, one can use some assumptions 
which are supported by the physics of power flows in 
transmission lines to simplify the Jacobian matrix. Therefore, in 
a power transmission system that is properly designed and 
operated the following holds [7]: 

1. Angular differences among buses are very small. 

2. The line susceptance’s are much larger than the line 
conductance’s. 

3. The power injected into bus is much less than which 
would flow if all lines from that bus were short 
circuited to the reference.  

Therefore, applying these approximations to simplify the 
elements of the Jacobian matrix as follows: 

 
    
    
    

-B G Δδ ΔP
=

-G -B ΔV ΔQ
 (4) 

where G and B are the conductance and susceptance matrices, 
respectively. In [3], a relaxed branch model of mesh network, 
which lacks the consistency in the voltage angles, is used to 
represent distribution network. 

B. Optimal Distributed Feedback Voltage Controller 

As mentioned earlier, we build the controller to have a 
feedback control loop that uses the local voltage measurement 
at each bus with other information as input to the controller to 
determine the output, the injected reactive powers at time 𝑡. Let 
𝐐(𝑡) be a given reactive power injections at instant 𝑡. These 
injections will determine the voltage profile 𝐯(𝑡). Next, using 
the voltage profile with other information, the controller 
computes  𝐐(𝑡 + 1), the reactive powers at time 𝑡 + 1. In this 
input-output relationship, the controller does not need to know 
details behind the system, thanks to the feedback control 
scheme. Therefore, the controller will be injecting reactive 
powers at each time 𝑡  to control the voltages while has no 

control over real power, i.e., it is constant and 𝚫𝐏 is zero. Hence, 
we can use (4) to find how voltages depends on reactive powers 
as follows: 

 
1

) ( )
−

 ( = − + 
-1ΔV ΔQ GB G B ΔQ  (5) 

The controller aims to keep the voltage within the acceptable 
range, while satisfying the reactive power constraints, and drive 
the system to the optimal operating point that has the least 
operational cost using local voltage measurement and shared 
variables among neighbors. To give more room for DERs to 
generate more real power we consider the objective function to 
be the injected reactive powers that need to be minimized. 
Hence, the problem can be formulated as the following: 
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where 𝐐 is the reactive power injections vector and it is the 

decision variable. 𝐶 is the number of controllers. 𝑣𝑖 and 𝑣𝑖 are 

the lower and upper voltage limits, respectively. 𝑄𝑖  and 𝑄𝑖  are 

the lower and upper reactive power injected by controller 𝑖 . 
Therefore, the Lagrangian function for this optimization 
problem can be written as: 

 𝐿(𝐐, 𝛌, 𝛍) =  𝑓(𝐐) + 𝛌𝑇 (𝐯 − 𝐯(𝐐)) + 𝛌
𝑇

(𝐯(𝐐) − 𝐯) +

                              𝛍𝑇 (𝐐 − 𝐐) + 𝛍
𝑇

(𝐐 − 𝐐)                          (9)   

where 𝛌  and 𝛌  are the Lagrangian multipliers vectors for 

voltage lower and upper limits, respectively. Each has a 
dimension equal or less than the number of load buses 𝑀, i.e., 
buses provided with control component. 𝛍  and 𝛍  are the 

Lagrangian multipliers vectors for reactive power injections 
lower and upper limits both with dimensions of 𝐶 . All these 
Lagrangian multipliers act as constraints violation level 
indicators for the constrained variables. It is worth to note that 
not all load buses may have control component. Ref. [3] has used 
the augmented Lagrangian in which no explicit constraints is 
applied on the reactive power injections. Therefore, a soft 
thresholding function is employed with projection of reactive 
power injections onto constraints which caused inconsistency in 
updating the Lagrangian multiplier corresponding to the reactive 
power injections. 

To solve the optimization problem the PDGD, more details 
can be found in [8], is employed. At each time step 𝑡 , the 
measured voltage at each node is employed to update the 
optimization’s variables. The controller performs a gradient 
descent for the gradient of Lagrangian with respect to 𝐐, the 
primal variable. At the same time, it  calculates gradient ascent 
along the Lagrangian with respect to dual variables, i.e., 𝛌 and 
𝛍. Then, the variables are updated. Finally, the controller injects 
the updated values of the reactive power into the grid. Therefore, 
it is looking for the saddle point of this dynamical system (10). 



 

( )
1

( ( ))( ( ))
( ) ( )( )

( ) ( )

( ) ( )

M
j

j ji
ji i

j j

v tf t
t tQ t

Q t Q t
t

t t

 

 

=

 
+ −  

 = −  
 + − 


QQ

(10.a) 

  
( )

( )
( )

i

i
i i t

t
v v

t 

 +
= −


Q  (10.b) 

  
( )

( )
( )

i

i
i i t

t
v v

t 

 +
= −


Q  (10.c) 

 
( )

( )
( )

i

i
i i t

t
Q t Q

t 

 +
 = − 

 (10.d) 

 
( )

( )
( )

i

i

i i
t

t
Q Q t

t 

 +
 = − 

 (10.e) 

The first term in (10.a) is the objective function partial 
derivative with respect to injected reactive power, equals 2𝑄𝑖(𝑡) 
in our case. In addition, the second term contains partial 
derivative of voltage with respect to injected reactive power and 
can be calculated using (5), which is the coefficient of ∆𝐐. The 
voltage appearing in equations (10.b-c) is equivalent to the 
measured voltage. Now, we have hybrid automaton system 
corresponding to our dynamical system (10), due to the use of 
positive projection in (10.d-e). The positive projection is 
employed to keep the Lagrangian multipliers evaluation 
positive. 

III. CASE STUDY 

The proposed approach is tested on two IEEE systems 
available in the test case archive [9] where the power flow 
equations are solved using MATPOWER [10]. We assume that 
reactive power sources are available at all load buses and can 
supply or consume a specified amount of reactive power. Two 
general cases are examined, static load and varying load with 
100 MVA as the base for all cases. We use Matlab’s ODE solver 
ode23t for all simulations. 

A. Static Load 

First, we consider load not varying with time. Starting with 
the IEEE 14-bus system. It has bus 1 as the slack bus. Buses 2, 
3, 6 and 8 are voltage-controlled buses (PV buses) having 
magnitudes voltage fixed, while all others are load buses. The 
system is heavily loaded resulting in low voltage profile as 
shown in TABLE I. Each load bus provided with control 
component which has a specific capacity to consume or supply 
Q according to its physical rating. Control components in this 
study can supply or consume up to 20 MVar. The voltage 
tolerance is set to 5% for all the cases.  

We run the controller in this condition and the simulation 
results are shown in Fig.1. It shows the reactive power injections 
to the left and voltage profile to the right. It illustrates that the 
controller is simultaneously able to bring the voltages to the 
acceptable range and satisfy the reactive power constraints at the 
minimum cost. TABLE II shows the voltage profile after 
convergence and Fig. 2. shows the evaluation of the cost 
function as the summation of all reactive power injected squared  

at each time step. 

TABLE I.  IEEE 14-BUS SYSYTEM VOLTAGE PROFILE (NO 

CONTROLLER) 

|𝒗𝟏| |𝒗𝟐| |𝒗𝟑| |𝒗𝟒| |𝒗𝟓| |𝒗𝟔| |𝒗𝟕| 
1.0600     1.0450     1.0100     0.9382     0.9393   1.0700     0.9806 
|𝒗𝟖| |𝒗𝟗| |𝒗𝟏𝟎| |𝒗𝟏𝟏| |𝒗𝟏𝟐| |𝒗𝟏𝟑| |𝒗𝟏𝟒| 
1.0900     0.9362     0.9348 .9899   1.0167  0.9927     0.8970 

TABLE II.  IEEE 14-BUS SYSYTEM VOLTAGE PROFILE (WITH 

CONTROLLER) 

|𝒗𝟏| |𝒗𝟐| |𝒗𝟑| |𝒗𝟒| |𝒗𝟓| |𝒗𝟔| |𝒗𝟕| 
1.0600     1.0450     1.0100     0.9500 0.9500 1.0700     1.0131 

|𝒗𝟖| |𝒗𝟗| |𝒗𝟏𝟎| |𝒗𝟏𝟏| |𝒗𝟏𝟐| |𝒗𝟏𝟑| |𝒗𝟏𝟒| 
1.0900     0.9848 0.9851 1.0209 1.0500 1.0125 0.9500 

 

 

Figure 1. IEEE 14-bus system simulation results.  

 

Figure 2. IEEE 14-bus system: Cost function.  

Next, we run the controller starting from the loading 
condition in the previous case but assume a ground fault on the 
transmission line between buses 4 and 5, the fault is cleared by 
tripping out the line. The simulation result is shown in Fig 3. 
Compared to the no-fault case more reactive power injected at 
bus 4, and the cost function has increased by 27%. In addition, 
we study IEEE 30-bus system which has slack bus at bus 1 and 
voltage-controlled buses at 2, 5, 8, 11 and 13. All others are load 



buses with installed control components that can supply or 
consume 20 MVar. This time the controller is tested under light 
loading to have high voltage profile. The reactive power 
injections and voltages evaluation are shown in Fig. 4. 

 

Figure 3. IEEE 14-bus system: Line between buses 4-5 is tripped out.  

 

Figure 4. IEEE 30-bus system simulation results.  

B. Varying Load 

To test the controller under more practical operating 
conditions, we used a varying load with 24-hour time span and 
1-hour time resolution, shown in Fig. 5. For the IEEE 14-bus 
system this load profile exists at all buses except the slack, 7, 
and 8 which originally have no load. So, the system is heavily 
loaded, causing low voltage profile at the load peak. The 
controller is adjusted to run every 1 hour since the operating 
condition has 1-hour resolution. To assess the performance of 
the controller the voltage profile without controller is shown in 
Fig. 6 and in Fig. 7 after applying the controller. The simulation 
result shows the controller quickly drives the voltage profile 
back to the acceptable range whenever it is out while keeps 
reactive power injection in its limits as shown in Fig 8. For the 
IEEE 30-bus system the voltage profile without controller 
highly fluctuates throughout the day as shown in Fig. 9. We run 
the controller under these conditions, the voltage profile for load 

buses is given in Fig. 10. It demonstrates that regardless of the 
load variations, the controller drives the voltages back into the 
acceptable range with the least cost. Fig. 11 shows the reactive 
powers injected by control components that exist over the 
system. It illustrates the control components consuming reactive 
power up to the 8th hour then supplying reactive power to keep 
the voltage profile within the acceptable range. 

 

Figure 5. IEEE 14-bus system: Load profile at all load buses.  

 

Figure 6. IEEE 14-bus system: Voltage profile (no controller) 

 

Figure 7. IEEE 14-bus system: Voltage profile (with controller) 



 

Figure 8. IEEE 14-bus system: Reactive power injection.  

 

Figure 9. IEEE 30-bus system: Voltage profile (no controller) 

 

Figure 10. IEEE 30-bus system: Voltage profile (with controller) 

 

Figure 11. IEEE 30-bus system: Reactive power injection.  

IV. CONCLUSION 

In this paper, optimal distributed feedback voltage controller 
was proposed. The performance was tested on two IEEE bus 
systems under static load and time varying load with time span 
of one day and 1 hour resolution. The controller managed to 
keep the voltage profile within acceptable magnitudes while 
satisfying the reactive power constrains of the control 
components in the optimum way in terms of operational cost. 
For future work, including real power to the control scheme is 
our goal. 
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