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BACKGROUND
 Power flow computations are fundamental to many power . Newton-Raphson is very sensitive to the initial
system studies. | | conditions (voltage magnitude and angle estimates).
 The solutions serve as a base In performing other power
system studies such as transient and voltage stability + A machine learning initializer based on random forest is
studies. | o designed to provide better initial voltage magnitude and
« Obtaining a converged power flow case Is not a trivial task angle guesses towards achieving power flow
especially in large power grids due to the non-linear nature convergence.
of the power flow equations
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Fig 1: Generation of 8761 Hourly Dispatch Power Flow Cases Training / Validation Cases (converged) 4,376 / 486
Testing (non-converging) 3,899
METHODOLOGY
Database of Converged Database of non- Run Newton-Raphson CO N C L U S I O N
(4,862) POCV:;';HOW (PF) converit::‘:'aé:gzz Power — PFon thz:t:elzitialized « A machine Iearning was used to pl‘ediCt
y ! the Initial voltage/angle guesses to
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Parameters and Normalize and Normalize Does the Power Elow Case not ]
| l' Case solved even with
Split 90/10 Final Trained ComeIge pEprininalsusee « The developed Random Forest
s0% 10% e initializer successfully converged 2,106
. L - — ‘D } Shorenawly power flow cases which did not
raining Data alidation Data Get predicted bus/star b Ived -
voltigaiiragirdennd B converge originally due to bad
] I angles } Initialization.
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T i . nicialize Tne original non-
i ol converging (3,899) Power | _ « The Random  Forest initializer
Flow cases with these .
predictions performed better when compared with
| _ S popular analytical methods like DC
Fig 3: Proposed Framework for Machine Learning Initializer Power Flow (DCPF) initialization which
RESULTS is used in industry.
Random Decision Linear
DCPF : FUTURE WORK
Parameter Forest Trees nitializer Regression o |
Initializer |Initializer Initializer * Retraining the model with more data
Total (Initial Non-Converged 3,899 3,809 3,899 3,899 and varying topology configurations
Power Flow Cases) Cases Cases  Cases Cases could provide further insights and
bower Flow Cases Converged 2,106 1,783 758 246 Improve the success rate of the model.
oy Initialization Cases Cases Cases Cases

 The capabilities of physics based deep-
54.01% 45.73%  19.44% 6.31% learning initializers need to be further

Investigated and compared with already
established machine learning methods.

Percentage (%) of Cases Solved
oy Initialization

Remaining Non-Converged 1,793 2,116 3,141 3,653
Power Flow Dispatch Cases Cases Cases Cases Cases
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