

DiME and AGVIS: A Distributed Messaging

Environment and Geographical Visualizer for Large-

scale Power System Simulation

Nicholas Parsly1, Jinning Wang1, Student Member, IEEE, Nick West1, Qiwei Zhang1, Member, IEEE,

Hantao Cui2, Senior Member, IEEE, Fangxing Li1, Fellow, IEEE
1Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, Knoxville, TN

2School of ECE, Oklahoma State University, Stillwater, OK, USA

nparsly@vols.utk.edu, jwang175@vols.utk.edu, nwest13@vols.utk.edu, qzhang41@vols.utk.edu, h.cui@okstate.edu,

fli6@utk.edu

Abstract—This paper introduces the messaging environment and

the geographical visualization tool of the CURENT Large-scale

Testbed (LTB) that can be used for large-scale power system

closed-loop simulation. First, Distributed Messaging

Environment (DiME) implements an asynchronous shared

workspace to enable high-concurrent data exchange. Second,

Another Grid Visualizer (AGVis) is presented as a

geovisualization tool that facilitates the visualization of real-time

power system simulation. Third, case studies show the use of

DiME and AGVis. The results demonstrate that, with the

modular structure, the LTB is capable of not only federal use for

real-time, large-scale power system simulation, but also

independent use for customized power system research.

Index Terms—Power grid, Open source software, Large-scale

system, High-concurrency Data, Geovisualization

I. INTRODUCTION

CURENT LTB [1] facilitates power system prototyping and
simulation at large-scale. With a modular structure, LTB
consists of a series of independent open-source packages,
including ANDES, DiME, and AGVis. LTB features large-
scale simulation, communication, and geographical
visualization. An open-source power system dynamic
simulator, ANDES using a hybrid symbolic-numeric
framework [2]-[3], is developed for rapid prototyping. Besides
the simulation engine, a messaging tool is needed for other
power grid modules such as the geographical visualization and
the energy management system.
Recently, the libraries for power system studies have been
enriched by the research community, from steady state analysis
[4]-[6] to dynamic simulation [7]-[9]. These libraries can be
employed in a distributed manner to alleviate the computation
and communication burden when scaling up for a large-scale
system. Open MPI [10] is an available open-source messaging
package that can be used for distributed messaging. However,

the above mentioned package is bottlenecked by massive data
volumes and heterogeneous programming languages.
Geographical visualization, also known as geovisualization, is
widely applied in fields like climatology [11] and archeology
[12] because of its intuitive and understandable display of
information. There exists some popular geovisualization
softwares, either commercial or open-source, such as ArcGIS
[13] and Google Earth [14]. For a real-time, large-scale power
system simulation, however, the challenges it faces tend to be
specific to a given power system, such as performance with
massive data and interfacing with other power system
simulation engines.
To address the challenges of data exchange and visualization
for real-time power system simulations, this paper introduces
two open-source packages, DiME and AGVis, which are
packages within CURENT LTB as well as independent
modules. The main contribution of this paper is summarized as
follows:

1. DiME has been developed to enable high-
concurrency, high-volume, and real-time data
exchange in large-scale power system simulations
using a shared workspace. Furthermore, DiME is
compatible with multiple programming languages,
which allows the application of other power system
simulation tools.

2. AGVis, a geographical visualizer with a
“MultiLayer” feature, has been developed to facilitate
geographical interpretation of power system
simulation results. Further, the enhanced AGVis
allows not only for real-time visualization for data
coming from ANDES, but also for independent use
with user-defined data.

3. This work demonstrates not only the federal use of
ANDES, DiME and AGVis for real-time, closed-loop
virtual power grid simulation at a large-scale, but also
the use of AGVis for user-provided data and multi-

mailto:nparsly@vols.utk.edu
mailto:jwang175@vols.utk.edu
mailto:nwest13@vols.utk.edu
mailto:qzhang41@vols.utk.edu
mailto:h.cui@okstate.edu
mailto:fli6@utk.edu
mailto:fli6@utk.edu

energy systems. These demonstrations show how
AGVis and DiME can both quickly and conveniently
provide geographical visualizations for interpreting
simulation results rather than pure numeric output.

The rest of the paper is organized as follows: Section II
discusses the philosophy of the asynchronous shared
workspace that is implemented in DiME. Section III explains
the geographical and MultiLayer visualization of AGVis.
Section IV presents case studies for DiME and AGVis. Section
V concludes this paper.

II. DIME

The version of DiME that has been added to LTB is actually

the second generation of DiME. The original DiME server was

written in Python, and there were only two DiME clients.

Although this original version performed quite admirably, it

ultimately ran too slowly when working with larger

simulations. Thus, DiME was fully rewritten to improve its

speed, portability, and usability.

A. DiME Server and Clients

Generally, traditional programming languages run

substantially faster than scripting languages. This is one of the

primary reasons why DiME was rewritten in C as opposed to

its original Python, the other being to reduce dependencies.

Depending on how it is initiated, a DiME server can handle

connections using IPC, TCP, and WebSockets. DiME uses a

simple poll(2) [15] loop to handle network connections. Then,

depending on a user’s operating system, it either uses the libev

[16] library or the WinSock2 [17] library to handle

synchronous I/O events. Despite the simplicity of DiME’s I/O

handling, it has throughput of 26 million IEEE doubles per

second. Although additional libraries or multithreading could

admittedly be used to improve DiME’s throughput further, the

simplicity of DiME’s current system speaks for itself and

fulfills the needs of CURENT’s simulations.

The current release of DiME is compatible with three

programming language clients—MATLAB, Python, and

JavaScript. These are all made to share approximately the same

functionality and are compatible with the same variable types.

They can not only send and receive standard data types like

strings, integers, and doubles, but also handle complex

numbers and NumPy-style N-dimensional arrays [18]. The

only major limitation any of clients have is that the JavaScript

client can only use WebSockets. Other than that, though, they

all effectively have the same features.

B. Shared Workspace

The shared workspace distributed computing model that DiME

implements allows clients to share variables between other

clients using a table maintained by the server. The server keeps

track of several tables owned by different groups. When a

client connects to a DiME server, it can request a group to join

by name. If this group is not available, the server will create it

and its associated table. Clients can join more than one group

at a time. A client can update the server’s tables by passing

variable names to either the send() function, which can specify

which groups’ tables to update, or the broadcast() function,

which updates the passed variables for all tables on the server.

The send_r() and broadcast_r() functions can also send data,

but require the user to specify what variable they want to send

and provide a value to send. Clients are able to receive data by

calling the sync() method, which will update client-side

variables, or sync_r(), which returns a table containing the

variables and their updated values. Clients can only receive

data that was passed to groups that they are a part of. Fig. 1 and

Fig. 2 demonstrate the relationship between the clients,

servers, and groups.

Figure 1. A representation of the interactions between DiME’s server and

clients.

Figure 2. A representation of the difference between the broadcast() and

send() commands in DiME.

III. AGVIS

AGVis is a Web-based JavaScript visualization application

that runs in users’ web browsers. The original intent of AGVis

was for it to receive data through DiME and act as a visualizer

for ANDES within the framework of CURENT LTB. Over

time, however, users requested an independent version of

AGVis to be made since it seemed useful outside of just being

ANDES’s visualizer. Creating a version of AGVis that did not

rely on DiME and ANDES would also better fit in with the

LTB’s focus of offering software that worked both as a

cohesive set and independently. A large update was made to

AGVis that added features to work independently from other

applications on top of the original feature set. To put it simply,

depending on how a user started AGVis, they would have two

different feature sets to work with. Due to the lack of parity

between the independent and dependent features, we will refer

to them as two different entities throughout this section for the

sake of clarity. Terms like “original” and “base” will refer to

the AGVis features that require other programs. “MultiLayer”

will refer to the features that are available with just AGVis’s

files.

A. Base geovisualization

Base AGVis requires some setup to use. The most common

way to start to use it is by downloading and installing Docker

[19], downloading the files for ANDES, DiME, and AGVis,

and creating a Docker image to run and host the three

applications simultaneously. Depending on a user’s

environment, they might have to perform additional setup.

Once a user opens a browser and connects to wherever AGVis

is being hosted, they will see a map. AGVis relies on Leaflet

[20], a JavaScript library for creating interactive maps, to

display power systems. The original version of AGVis uses

five primary layers: the Tile layer, the Zone layer, the

Topology layer, the Contour layer, and the Search layer. The

Tile layer is the lowest layer and displays the world map, the

Zone layer displays predefined regions, the Topology layer

displays nodes and lines from simulation data on the map, the

Contour layer animates a heat map from simulation data, and

the Search layer allows nodes to be searched. Of these, the

most important are the Topology and Contour layers.

When base AGVis connects to a DiME server, it waits until it

begins to receive data. The data it receives is almost

exclusively used by the Topology and Contour layers since

they are what display the simulation animation. One of the first

things AGVis receives is the topology data. Once it receives

the data, it parses it and displays the buses and lines of a given

power system on the Topology layer. After that it will display

a heat map of the simulation data as fast as it receives it. This

heat map is shown on the Contour layer. It is created by

performing Delaunay triangulation on the points in the

Topology layer and calculating the heat map for the triangles

based off of the simulation data. Then it finally performs a

smoothing function to create a gradient across the triangles.

The Contour layer is updated every frame that new data is

received.

Once a simulation stops sending data to AGVis, it will add a

playback bar for the simulation. The playback bar uses the

“history” object, which stores all data that was passed to

AGVis. Users can view the simulation at its real time speed or

at customizable speed. Users can also change certain

parameters for the simulation, like which variable the heat map

uses, how sensitive the heat map is to change, or where the

timer starts and how much increments per second. If a user

wants to change which simulation they are viewing, they must

restart AGVis and ANDES.

B. Multilayer feature

The MultiLayer implementation of AGVis helps address a few

of the problems with the original AGVis. Base AGVis requires

users to restart two pieces of software to examine other

simulations. Furthermore, its installation changes depending

on a user’s operating system. MultiLayer AGVis circumvents

both of these issues by allowing users to upload more than one

data set at a time and by only needing itself, a browser, and a

way to locally host files to run. Although the MultiLayer

features are available when running base AGVis, they are also

available if a user only locally hosts AGVis’s files. This means

that the MultiLayer features can be run in effectively the same

way regardless of operating system.

The MultiLayer functionality in AGVis uses a new kind of

Topology layer alongside the original. Instead of receiving

data from DiME like the original Topology layer, this new

Topology layer, called MultiTop, uses data from a user

provided Excel file to display nodes and lines. For each file a

user uploads in the “Add Layers” menu of AGVis, a new

MultiTop layer is created and added to the map. This approach

of giving each new file its own layer allows the MultiLayer

implementation to go far beyond the original AGVis in

customization and ease of use.

Giving each data set its own layer allows for users to customize

a specific data set without affecting all of the other data sets.

MultiLayer is able to customize node colors, opacities, and

sizes, and line colors, opacities, and sizes for each uploaded

system. It can also freely add, hide, and delete MultiTop layers.

The primary limitation of the MultiLayer implementation, and

the main reason why base AGVis is still relevant, is that

MultiLayer has no Contour layer equivalent for MultiTop

layers. MultiLayer AGVis is currently unable to produce

animations from power system simulations.

IV. CASE STUDIES

A. Federal use of DiME, AGVis, and ANDES

Although DiME is primarily meant to be used as a messaging

environment for distributed computing, it also has uses as a

simple way to pass data between programs of different

languages. This is best shown when running base AGVis with

ANDES. When they start, AGVis and ANDEs both connect to

a DiME server if one is available. Then, as shown in Fig. 3,

DiME acts as an intermediary between them. ANDES sends

data to the group that AGVis has joined, and AGVis waits until

data is sent to it. Then AGVis animates the simulation based

on the data it receives. Fig. 4 shows AGVis displaying the

topology for the CURENT North America test case. Fig. 5

shows screenshots from AGVis while in a dynamic simulation

study, which shows the frequency contour map during the

transient stability study. Fig. 5 contains a capture from both

during and after the AGVis receives simulation data from

ANDES.

Figure 3. A component diagram of the interactions between ANDES, DiME,

and AGVis.

Figure 4. AGVis visualizing the entire NA system. UI cropped for clarity.

Figure 5. AGVis visualizing the WECC system. On the left is AGVis while

receiving data from ANDES. On the right is AGVis after finishing data

reception. Note the playback bar in the bottom left of the right image.

These animations are performed in real-time as AGVis

receives data from DiME. Furthermore, the playback bar for

reviewing a given animation becomes available as soon as

DiME finishes sending data. This means users can interpret

simulations at the speed that they run. The federal use of

ANDES, DiME, and AGVis provides a fast and distinct

method for comparing differences when developing

simulations for a given system.

B. MultiLayer Implementation

The MultiLayer implementation of AGVis is best used for its

customization options and convenience when adding new data,

such as new buses. Fig. 6 shows AGVis after uploading two

systems, an IEEE 39 bus system, and an example gas network.

AGVis displays the transmission lines and buses for both

systems. Both systems’ nodes and lines have been customized.

The “Prioritize Layer” button has been used on the IEEE 39

bus system so that it is rendered above the gas network. The

other figure, Fig. 7, shows AGVis after deleting the IEEE

system, leaving the example gas network. Fig. 6 and Fig. 7,

both include the “Add Layers” menu to show how the menu

accommodates the adding and removing of data.

 Figure 6. AGVis displaying the IEEE 39 bus and example gas network

systems with customized settings.

 Figure 7. AGVis displaying only the gas network after deleting the

IEEE 39 bus system.

The MultiLayer features of AGVis allow for users to

efficiently create maps with distinct multi-energy systems

using MultiLayer’s customization options. Users can also use

MultiLayer in tandem with the federal use of AGVis to

examine where a simulated system might affect other,

overlapping systems.

Additional demonstrations of both the MultiLayer and federal

use of AGVis can be found on the official CURENT YouTube

channel [21].

V. CONCLUSIONS

Large-scale power system simulation faced challenges

involving high-concurrent data exchange and results

interpretation. This paper proposes DiME, a distributed

messaging environment and AGVis, a geovisualization tool.

DiME implements a shared workspace model for distributed

computing that can handle high-concurrency, high-volume

data for JavaScript, Python, and MATLAB programs. With

modular structure, LTB allows convenient, federal use of

ANDES, DiME, and AGVis for real-time large-scale power

system simulation and visualization. Further, with the

MultiLayer feature, AGVis also facilitates user-provided data

mapping. The results show that with the modular structure,

LTB is capable of not only federal use for real-time large-scale

power system simulation, but also independent use for various

customized power system research.

In the future, DiME and AGVis will be further improved to be

compatible with multi-energy systems and other emerging

power system technologies.

ACKNOWLEDGMENT

The authors would like to acknowledge the financial support
from CURENT, a National Science Foundation (NSF)
Engineering Research Center funded by NSF and Department
of Energy under NSF Award EEC-1041877.

REFERENCES

[1] F. Li, K. Tomsovic, H. Cui, "A Large-Scale Test

Bed as a Virtual Power Grid - For Closed Loop Controls for

Research and Testing," IEEE Power and Energy Magazine,

vol. 18, issue 2, pp. 60-68, March-April 2020.

[2] H. Cui, F. Li, "ANDES: A Python-Based Cyber-

Physical Power System Simulation Tool," North American

Power Symposium (NAPS) 2018, 6 pages, Fargo, ND, Sept.

9-11, 2018.

[3] H. Cui, F. Li, K. Tomsovic, "Hybrid Symbolic-

Numeric Framework for Power System Modeling and

Analysis," IEEE Transactions on Power Systems, vol. 36, no.

2, pp. 1373-1384, Mar. 2021.

[4] R. D. Zimmerman, C. E. Murillo-Sánchez and R. J.

Thomas, "MATPOWER: Steady-State Operations, Planning,

and Analysis Tools for Power Systems Research and

Education," in IEEE Transactions on Power Systems, vol. 26,

no. 1, pp. 12-19, Feb. 2011, doi:

10.1109/TPWRS.2010.2051168.

[5] L. Thurner et al., "Pandapower—An Open-Source

Python Tool for Convenient Modeling, Analysis, and

Optimization of Electric Power Systems," in IEEE

Transactions on Power Systems, vol. 33, no. 6, pp. 6510-

6521, Nov. 2018, doi: 10.1109/TPWRS.2018.2829021.

[6] Xiaoming Feng et al., "A new breed of software tool

for integrated electrical power system and market analysis-

GridView," IEEE Power Engineering Society Summer

Meeting, 2002, pp. 737-743 vol.2, doi:

10.1109/PESS.2002.1043404.

[7] W. Wang, X. Fang, H. Cui, F. Li, Y. Liu and T. J.

Overbye, "Transmission-and-Distribution Dynamic Co-

Simulation Framework for Distributed Energy Resource

Frequency Response," in IEEE Transactions on Smart Grid,

vol. 13, no. 1, pp. 482-495, Jan. 2022, doi:

10.1109/TSG.2021.3118292.

[8] J. Wang, F. Li, H. Cui and Q. Zhang, "Impacts of

VSG Control on Frequency Response in Power Systems with

High-Penetration Renewables," 2021 IEEE 5th Conference

on Energy Internet and Energy System Integration (EI2),

2021, pp. 171-176, doi: 10.1109/EI252483.2021.9712880.

[9] H. Cui and Y. Zhang, “Andes_gym: A Versatile

Environment for Deep Reinforcement Learning in Power

Systems,” 2022, doi: 10.48550/ARXIV.2203.01292.

[10] E. Gabriel et al., “Open MPI: Goals, Concept, and

Design of a Next Generation MPI Implementation”, in

Proceedings, 11th European PVM/MPI Users’ Group

Meeting, 2004, pp. 97–104.

[11] A. Bohman, T.-S. Neset, T. Opach, and J. K. Rød,

“Decision support for adaptive action – assessing the

potential of geographic visualization,” Journal of

Environmental Planning and Management, vol. 58, no. 12,

pp. 2193–2211, Nov. 2014, doi:

10.1080/09640568.2014.973937.

[12] N. Gupta and R. Devillers, “Geographic

Visualization in Archaeology,” Journal of Archaeological

Method and Theory, vol. 24, no. 3, pp. 852–885, Sep. 2016,

doi: 10.1007/s10816-016-9298-7.

[13] “About ArcGIS | Mapping & Analytics Platform,”

Esri, 2019. https://www.esri.com/en-us/arcgis/about-

arcgis/overview (accessed Nov. 1, 2022).

[14] Google, “Google Earth,” Google, 2019.

https://earth.google.com/web (accessed Nov. 1, 2022).

[15] "poll(2)," The Open Group.

https://pubs.opengroup.org/onlinepubs/007908799/xsh/poll.ht

ml (accessed Oct. 27, 2022).

[16] M. Lehmann. "libev," Schmorp.

http://software.schmorp.de/pkg/libev.html (accessed Oct. 27,

2022).

[17] stevewhims, “Windows Sockets 2 - Win32 apps,”

Microsoft. https://learn.microsoft.com/en-

us/windows/win32/api/_winsock/ (accessed Oct. 27, 2022).

[18] C. R. Harris et al., ‘Array programming with

NumPy’, Nature, vol. 585, issue 7825, pp. 357–362, Sep.

2020, doi:10.1038/s41586-020-2649-2.

[19] “Docker Desktop for Mac and Windows | Docker,”

Docker, 2019. https://www.docker.com/products/docker-

desktop(accessed Nov. 1, 2022).

[20] V. Agafonkin, “Leaflet — an open-source

JavaScript library for interactive maps,” LeafletJS, 2019.

https://leafletjs.com/ (accessed Oct. 27, 2022).

[21] CURENTLTB, “CURENT LTB,” in YouTube, 2022,

https://www.youtube.com/@curentltb

https://www.esri.com/en-us/arcgis/about-arcgis/overview
https://www.esri.com/en-us/arcgis/about-arcgis/overview
https://earth.google.com/web

