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This poster presents a comprehensive review of microgrid control is

presented with its fusion of model-free reinforcement learning (MFRL).

» Plotting of a high-level research map of microgrid control from the
perspective of operation mode, function grouping, timescale, hierarchical
structure, communication interface, and control techniques.

» Development of modularized control blocks to dive into the
fundamental units of microgrids: GFL and GFM inverters.

» Introduction of the mainstream MFRL algorithms and summary of
MFRL application guidelines

» Discussion of the primary challenges associated with adopting MFRL in
microgrid control and providing insights for addressing these concerns.
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Fig. 1 High-level research map of microgrid control
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Fig. 2 Modularized control blocks of grid-following and grid-forming inverters Fig. 4 Mainstream Reinforcement learning algorithm

 Fusion of microgrid control with RL % Challenge and Vison

» Model identification and parameter tuning

« |dentify the models of the microgrid components

* Find the optimal parameters for grid components and controllers
l.e., Inertia and damping estimation, Pl gain tuning

» Supplementary signal generation
Generate supplementary control signals for existing model-based controller
l.e., supplementary signal of primary controller for better load sharing

» Controller substitution
Replace the model-based controllers and directly output control actions
l.e., RL-based dispatching, replace PI controllers with RL agent

> Environment > Scalability

Reduce control complexity with
domain knowledge

* Increase the exploration efficiency:
evolutionary RL

 Distributed techniques: federated
learning and edge computing

» Better Numerical simulator: accurate
and faster numerical simulator;
general power environment like “gym”

» Better Hardware testbed: specialized
testbed with protection schemes

» Security

« Constrained RL and Safe RL:
respect physical constraints

* Physics-constrained deep
learning and Physics-informed

> Generalization

« Training scenario generation:
representative scenarios;
standardized open source data

« Combined with advanced Al

J Conclusions

techniques: robust RL; long-tall
learning; transfer learning

» There are three ways of fusing MFRL with the existing model-based
controllers, including 1). model identification and parameter tuning, ii).
supplementary signal generation, and iii). controller substitution.

» The main challenges of employing MFRL in microgrid control are
associated with the environment, scalability, generalization, security, and
stability, and there are corresponding strategies to address these
concerns.

* Integrate model-based criteria: semidefinite
programming (SDP), linear matrix inequality
(LMI), Lyapunov function

training

> Stability

deep learning: embeds the
knowledge of physical laws into

 Enrich training scenarios
as much as possible
 Policy validation through

time domain simulation




