

Multi-objective Design Optimization for Highbandwidth Printed Circuit Board Shielded Rogowski Coils

Xingyue Tian, Sadia Binte Sohid, Han (Helen) Cui, Fred Wang, Kevin Bai

The University of Tennessee, Knoxville

Motivation for Optimization Shielded PCB RC

- Fast-switching current measurement is a challenging task with the development of Gallium Nitride (GaN) devices
- Rogowski coils gain attention for their potential bandwidth, compact size, high accuracy, and ease of integration.
- PCB shielded Rogowski coils present a more intricate structure with numerous geometric parameters to design.

Modeling of Shielded PCB Rogowski Coil

$$\frac{V}{I} = \frac{M}{L_S} \times \frac{1}{R_l^{-1} - j\sqrt{C_S/L_S}\cot(\omega\sqrt{L_S}C_S)}$$

$$f_L = \frac{R_l}{2\pi L_S}$$

$$f_H = \frac{R_l}{2\sqrt{L_S}C_S}$$

$$Z\sqrt{L_{S}C_{S}}$$

$$M = \frac{\mu_{0}Nh}{2\pi} \ln \frac{b}{a}$$

$$C_{S} = \frac{1.10 * 10^{-10} * \varepsilon_{r}}{\ln \frac{2(2H+h)}{0.268w+0.335T}}$$

$$L_{S} = \frac{\mu_{0}N^{2}h}{2\pi} \ln \frac{b}{a} + C_{S} \times \frac{80}{\epsilon_{r}} \left[1 - \frac{H}{4(H+h)} \right] \times \ln \frac{1.9(2H+T)}{0.8w+T}$$

 PCB shielded Rogowski coils present a more intricate structure with numerous geometric parameters to design.

Optimization Goal & Boundary Conditions

 The boundary conditions are determined by size limitation and physical 4 layer PCB

D	Boundary Condition		
Design parameters	Minimum	Maximum Constrained by a and b	
Number of Turns (N)	10		
Shielding Hieght (H)	$0.08 \mathrm{\ mm}$	2 mm	
Coil Heigh (h)	0.2 mm	2.2 mm	
Trace Thickness (T)	1 oz	3oz	
Via Diameter (d)	0.1524 mm	0.254 mm	
Trace Width (w)	0.1524 mm	0.254 mm	
Inner Radius (a)	1.5 mm	$7 \mathrm{mm}$	
Outer Radius (b)	2.5 mm	10 mm	
Load Resistance (R_l)	$0.1~\Omega$	5 Ω	

Rogowski coil Design Optimization Process

- OFAT approach) can lead to massive data and huge computational complexity
- Geometric parameters affect sensitivity and bandwidth by directly changing parasitic parameters.

- DoEs involve generating a few representative, highquality geometrical parameter input combinations.
- Sensitivity and bandwidth are calculated based on the analytical model in MATLAB
- Optimization results after model fitting by Neural Networks embedded in JMP

Experimental Verification and Comparison

Name of parameter	Change in parameter	Gain	High-frequency Bandwidth
Number of Turns	25%	-0.8%	-20.8% ↓
Inner radius	-5.6%	-4.0% ↓	-19.9% ↓↓
Outer Radius	5.9%	-0.8%	-34.4% ↓↓↓
Shielding Height	13.2%	-0.4%	-8.6%
Load resistance	42.2%	-14.3% ↓↓↓	-3.7%

The outer radius, inner radius, and the number of turns are the most crucial factors in PCB Rogowski coil design

