

Dynamics-incorporated Hybrid Symbolic-Numeric Modeling for Stability Constrained Production Cost Simulation Market Simulator for CURENT Large-scale Testbed

Jinning Wang¹, Fangxing Li¹, Xin Fang², Hantao Cui³, Buxin She⁴, Hang Shuai¹, Qiwei Zhang⁵, Kevin Tomsovic¹

University of Tennessee, Knoxville, 2. Mississippi State University, 3. Oklahoma State University,
Pacific Northwest National Laboratory, 5. Johns Hopkins University

DISPATCH MODELING CHALLENGES

- ❖ Incorporate new dispatchable devices and elements
- ❖ Integrate dynamics into dispatch to ensure dynamic stability
- Modeling gaps between the device level and the system dispatch level

CONTRIBUTIONS

- Bridge the modeling gap
- Streamline the dispatch modeling via modular design
- Enable interoperation with dynamics

DESIGN PHILOSOPHY

Α	В	С	D	Е	F	G	Н	I	J	K	L	M	N	C
uid	idx	u	name	Vn	vmax	vmin	v0	a0	xcoord	ycoord	area	zone	owner	
0	1		1 BUS1	345	1.1	0.9	1.03145	-0.214096	0	0	AREA1	ZONE1		
1	2		1 BUS2	345	1.1	0.9	1.00247	-0.250216	0	0	AREA1	ZONE1		
2	3		1 LOAD3	345	1.1	0.9	0.95348	-0.334253	0	0	AREA1	ZONE1		
3	4		1 LOAD4	345	1.1	0.9	0.93103	-0.336252	0	0	AREA1	ZONE1		
4	5		1 BUS5	345	1.1	0.9	0.91744	-0.304876	0	0	AREA1	ZONE1		
5	6		1 BUS6	345	1.1	0.9	0.91858	-0.291919	0	0	AREA1	ZONE1		
6	7		1 LOAD7	345	1.1	0.9	0.86255	-0.325226	0	0	AREA1	ZONE1		
7	8		1 LOAD8	345	1.1	0.9	0.87995	-0.332171	0	0	AREA1	ZONE1		
8	9		1 BUS9	345	1.1	0.9	0.9788	-0.244875	0	0	AREA1	ZONE1		
9	10		1 BUS10	345	1.1	0.9	0.95616	-0.256497	0	0	AREA1	ZONE1		
10	11		1 BUS11	345	1.1	0.9	0.94295	-0.270254	0	0	AREA1	ZONE1		
11	12		1 LOAD12	138	1.1	0.9	0.94491	-0.300265	0	0	AREA1	ZONE1		
12	13		1 BUS13	345	1.1	0.9	0.95234	-0.272154	0	0	AREA1	ZONE1		
13	14		1 BUS14	345	1.1	0.9	0.94651	-0.302902	0	0	AREA1	ZONE1		
14	15		1 LOAD15	345	1.1	0.9	0.95647	-0.314027	0	0	AREA1	ZONE1		
15	16		1 LOAD16	345	1.1	0.9	0.97673	-0.287794	0	0	AREA1	ZONE1		
16	17		1 BUS17	345	1.1	0.9	0.97495	-0.307646	0	0	AREA1	ZONE1		
17	18		1 LOAD18	345	1.1	0.9		-0.326169	0	0	AREA1	ZONE1		
18	19		1 BUS19	345	1.1	0.9		-0.203839	0		AREA1	ZONE1		
19	20		1 LOAD20	138	1.1	0.9	0.97981	-0.229705	0	0	AREA1	ZONE1		
Summary	Bus PV	Slack	Line Shur	it PQ	Area Re	gion GCost	DCost N	SRCost SRCos	st SFRCost	SR N	SR SFR	EDTSlot I	JCTSlot +	

CASE STUDY

Benchmark of DCOPF costs

Cost [\$]	AMS	MATPOWER	pandapower
IEEE 14-Bus	7,642.59	7,642.59	7,642.59
IEEE 39-Bus	41,263.94	41,263.94	41,263.94
PEGASE 89-Bus	5,733.37	5,733.37	5,733.37
IEEE 118-Bus	125,947.88	125,947.88	125,947.88
NPCC 140-Bus	705,667.89	705,667.89	705,667.89
WECC 179-Bus	348,228.36	348,228.36	348,228.36
IEEE 300-Bus	706,292.32	706,292.32	706,292.32
PEGASE 1354-Bus	1,173,590.63	1,173,590.63	1,173,590.63
PEGASE 2869-Bus	2,338,915.61	2,338,915.61	2,338,915.61
GOC 4020-Bus	793,634.11	793,634.11	793,634.11
EPIGRIDS 5658-Bus	1,195,466.12	1,195,466.12	1,195,466.12
EPIGRIDS 7336-Bus	1,855,870.94	1,855,870.94	1,855,870.94

Computation time of OPF on small to medium scale cases

Computation time of 24-hour load level scanning using OPF

Computation time of OPF on large scale cases

Computation time of multi-period dispatch

CONCLUSIONS

- ❖ A modularized dispatch modeling framework
- Framework features: extensible dispatch formulation, scalable performance, compatible data structure, interoperable operation with dynamic simulators.
- ❖ Enable development efforts for dispatch modeling and dispatch-dynamic cosimulation.
- Empower CURENT LTB with dispatch functionality

FUTURE WORK

- Multi timescale dispatch coordination for digital twin prototype
- Dispatch algorithms that effectively incorporate dynamics constraints
- Virtual energy market to for new market mechanisms

