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Abstract—Inverter-based resources (IBRs), such as Photo-
voltaic (PV) and battery storage systems, are widely deployed
to achieve carbon-free power systems. However, the anomalies,
such as waveform distortions, and wide-band oscillations, caused
by the IBRs have brought challenges to situational awareness,
especially in the low inertia power systems. The anomalies such
as generation trips and load shedding also have higher frequency
deviation and voltage magnitude drops caused by the changing
of inertia. To achieve effective anomaly identification, this paper
proposed a point-on-wave (POW) based algorithm utilizing the
real-time POW measurements from synchronized measurement
units (SMUs). Four SMUs are specially designed and deployed
on Hawaii islands to receive instantaneous POW measurements.
Then, different physical characteristics, as well as statistical
features are extracted from POW measurements to filter the
anomalies. The anomaly identification approach based on the
random forest is developed and deployed into the FNET/GridEye
system considering the trade-offs among accuracy, computational
burden, and deployment cost. To verify the performance of
the proposed algorithm, different experiments are carried out
with collected field test data. The result demonstrates that the
performance of the proposed POW-based anomaly categorization
algorithm can reach 94.54% which has comparable performance
among benchmarking algorithms.

Index Terms—Anomaly identification, point-on-wave measure-
ment, synchronized measurement unit, low inertia power systems

I. INTRODUCTION

HANKS to the fast development of distributed energy

resources (DERs) and smart inverter technologies, mea-
surement dynamics widely exist in distribution level power
grids [1]. These dynamics have brought challenges to accurate
anomaly detection, categorization, and situational awareness
[2]. Some dynamic phenomena, including large voltage magni-
tude changes, fast frequency drops, and waveform distortions,
are caused by the low inertia in the power system [3]. The syn-
chronized measurement units (SMUs) deployed in distributed
grid contribute to the dynamic information collection of the
sensors [4]. However, the successful situational awareness
suffer from varied data anomalies.

In this regard, situational awareness, such as disturbance
identification and localization in a low inertia power system,
is more complicated than that in a large-scale power system
which places a requirement on the high-density synchrophasor
and waveform-related feature measurements. Furthermore, the
Point on the Wave (POW) measurements [5] can acquire
panorama features during the anomaly, which enables multiple
critical applications for Inverter Based Resources (IBR)-heavy
feeders, including protection system analysis, capturing elec-

tromagnetic transients and sub/super- synchronous resonance,
DER and flexible AC transmission system (FACTS) model
improvement, as well as power quality studies. Additionally,
POW measurements are also able to provide robustness and
algorithm-free synchrophasor measurements. Considering the
abovementioned advantages, effective anomaly identification
solutions can be further developed to achieve situational
awareness in the low inertia power system.

Most of the existing real-time anomaly detection algorithms
are based on the synchrophasors from SMUs. By collecting
real-time frequency streaming, the wide-area monitoring sys-
tem is able to detect and categorize anomalies such as gen-
eration trips, line outages, load shedding, and low-frequency
oscillations in the past decades [6]. In addition to the frequency
measurements, the root mean square (RMS) values of voltage
magnitude are also widely used in anomaly identification
algorithms. For example, [7] monitors the load switching
statuses by using voltage magnitude RMS values. An off-line
anomaly categorization algorithm is proposed using voltage
magnitude measurements while considering cyberattacks [8].
Moreover, POW measurements have been converted into RMS
values of voltage magnitudes in [9] to identify and categorize
the anomaly within an operational smart power grid. High-
dimensional synchrophasors can provide real-time anomaly
identification in [10]. In addition, harmonics and other power
quality factors are also utilized for anomaly detection such
as using Stockwell transform [11] and its related features
[12]. To identify the anomaly in a low inertia power system,
a straightforward methodology is developed by checking the
waveform difference between adjacent cycles. However, off-
nominal frequency measurements can trigger this POW-based
detector with complicated real-world cases.

Currently, anomaly categorization algorithms primarily be-
long to data-driven-based methods. To achieve a fast anomaly
diagnosis, multiple data-driven-based anomaly categorization
algorithms have been proposed by using artificial intelli-
gence methodology. For instance, [13] proposed a task-data-
driven and physic-based model targeting real-time dynamic
anomaly identification. Neural-network-based algorithms, in-
cluding deep neural network [14] and convolution neural
network [15], have been proposed to categorize anomalies
targeting generation trips and load shedding due to their strong
learning ability. Additionally, a k-nearest neighborhood (kNN)
based algorithm [16] has been proposed by using time and
frequency domain features to categorize anomalies. However,
the neural network approaches have an enormous demand for
the number of samples. And the black-box property lacks



the participation of physical mechanisms thus limiting their
applications.

In contrast, data-driven based methods that combine phys-
ical properties and learning capabilities provide low-cost and
easy-to-implement solutions, such as decision-tree-based [17]
and random-forest-based algorithms [18]. For instance, the
POW-based detector named a delta-delta-based anomaly de-
tector is designed to accurately detect anomalies in a low
inertia island power system [19]. Importantly, only 2% of the
POW measurements during anomalies have been analyzed by
power utilities [9] because its ultra-high data resolution limits
its efficiency. Therefore, the physical-based methods could
effectively filter the anomalies from multiple SMUs.

Taking the panoramic features from real-time POW mea-
surements, the waveform information can be fully utilized
for situational awareness in distribution-level power sys-
tems. The first national-level wide-area measurement system,
FNET/GridEye, which is currently operated by the University
of Tennessee, Knoxville (UTK) and Oak Ridge National
Laboratory (ORNL) [20], had upgraded its SMU by using
POW-based Universal Grid Analyzers (UGAs) [21]. Four
POW-based UGAs have been deployed on Kauai island which
contains a typical low inertia island power grid [22]. The
average proportion of DERs is higher than 38% and the
maximum instantaneous value can reach 60% recently in 2021
[23]. Overall, the efficient filtering and identification of the
anomalies are critical as a result of the high data density of
the POW measurement.

To achieve effective anomaly identification and further
improve situational awareness capability, this paper proposes
a real-time POW-based anomaly detection algorithm. The
physical information such as the rate of change of frequency
(RoCoF) and RMS are first calculated, and then it combines
the power density threshold and data-driven-based method
to achieve real-time anomaly categorization. The primary
contributions are summarized below

1) A real-time POW-based anomaly detection algorithm is
proposed to capture waveform distortions. The algorithm
is implemented based on the recursive form to reduce the
calculation burden. Importantly, the proposed algorithm
has been deployed on the FNET/GridEye system for
real-time anomaly detection purposes.

2) Four POW-based SMUs are deployed in Hawaii islands
and one-year POW measurements are collected for
anomaly categorization in a low inertia power system.
An anomaly categorization algorithm based on ran-
dom forest and the Bayesian optimization are designed
considering POW, frequency, RMS values of voltage
magnitudes, and power spectral densities.

3) A POW-based anomaly library has been built up tar-
geting low-inertia and high PV-penetration power grids.
The anomalies have been confirmed with local utility
companies on Hawaii islands.

4) Multiple experiments have been carried out to verify
the performance of the proposed anomaly categorization
algorithm, where the results demonstrate its profound
performance compared with other advanced algorithms.

TABLE I
SPECIFICATIONS OF THE POW-BASED UGA

Parameter names Values
POW reporting rate 1440 Hz
Frequency reporting rate 10 Hz
Synchrophasor reporting rate 10 Hz
GPS information satellite number, locations
Communication protocol IEEE C37.118.2
Frequency accuracy +0.00015 Hz

Phase angle accuracy +0.005 degree
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Fig. 1. The UGA deployment layout on Kauai Island. Source:

https://kiuc.coop/renewable-portfolio

The rest of the paper is organized as follows. Section II
presents POW-based SMU designation. Then, the POW-based
anomaly detection and categorization algorithms are presented
in Section IIT and IV, respectively. The experiment is presented
in Section V. The conclusion is drawn in Section VI.

II. POW-BASED SMU DEPLOYMENT

The POW-based UGA is a specially designed SMU that
targets measuring the high-resolution synchronized POW [21],
where its indexes are listed in Table I. The specifications of
the POW-based UGA show a strong capability of monitoring
waveform distortions with a time resolution of 0.69ms and
an oscillation frequency ranging from DC to 720 Hz. Notice
that the frequency and synchrophasors are also available
from POW-based UGAs to fulfill the IEEE C37.118.2 [24]
requirement.

To detect anomalies from IBRs, four POW-based UGAs
have been deployed on Kauai Island. As illustrated in Fig. 1,
four POW-based UGAs are deployed in the Anahola substa-
tion, Kauai Island Utility Cooperative (KIUC) building, the
Lawai substation, and the AES Hawaii Pacific Missile Range
Facility (PMRF), respectively, where AES Hawaii and KIUC
are local utility companies. The reason for choosing these

Fig. 2. The POW-based UGA data streaming from FNET public website.
Source: https://fnetpublic.utk.edu/tabledisplay.html



R [

POW-based UGAs on Kauai island

Calculate features:
S RoCOF (1), Ug1), Usoa(2). P(f)

|

|

: Calculate the Uyy(f) and Uypit)
| by (1) and (2)
|

|

|

v
‘ Update the r,(7) by (4) |

— ) ? =

|

| _

| Yy

I Record POW measurements
during the anomaly

FNET/GridEye POW |

‘ Calculate the phase angles }4—

Train the random forest model

Update the frequency using
2-cycle DFT and least
squares fitting algorithm

Store the anomaly into the anomaly
library

Calculate the power spectrum
density M,(t)

Update and regenerate the random
forest-based model

0> M T

Yv

Predict the anomaly with

Servers

measurements | ‘

Time and Frequency domain anomaly detection ‘

the random forest-based algorithm

@ Data acquisition

e

@ Time-Frequency domain anomaly detection

@ Anomaly Categorization

Fig. 3. The overall framework of the proposed anomaly detection and categorization algorithm.

locations is that there exist multiple IBRs aside from these
locations. It also demonstrates that the UGA is close to solar
utilities and battery storage systems, such as Tesla electric
vehicle (EV) charging stations. The waveform distortions,
harmonics, and oscillations aside from IBRs such as battery
energy storage systems and photovoltaic systems are sensitive
to the dynamic fluctuations for both power generations and
loads.

The real-time POW measurements of these four UGAs
will be streamed back to the FNET/GridEye servers. The
FNET/GridEye servers provide online frequency monitoring
and application services [25]. The four POW-based UGAs on
Kauai island are illustrated in Fig. 2, where the color bars
represent the frequency measurement interval from the units
[26]. Meanwhile, the POW measurements will be calculated
into anomaly detectors and categorization triggers.

III. POW BASED ANOMALY DETECTION ALGORITHM
A. Anomaly detection and categorization framework

The overall framework of the proposed anomaly detection
and categorization algorithm is illustrated in Fig. 3, where the
framework contains three stages.

1) Data acquisition: POW measurements are collected by
UGAs and then will be firstly streamed back to the
FNET/GridEye server with data preprocessing including
data conditioning and time alignment.

2) Anomaly detection: In the time domain, the periodic
waveform detector is designed to compare the inte-
gration of the two adjacent cycles’ voltage magnitude
values. Then the time and frequency domain anomalies
are detected based on the threshold.

3) Anomaly categorization: The physical features are ex-
tracted including the POW, frequency, RMS values of
voltage magnitudes, and power spectral densities. Then,
the anomaly categorization algorithm based on the ran-
dom forest is designed.

B. Time domain based Periodic waveform detector

To achieve anomaly detection, the location of the distinctive
waveform is required to be detected in the time domain first.
Here, the phase and voltage magnitude step changes cost by
DERs are first detected. Its basic idea is to calculate the voltage

magnitude difference, Ug;rr, between two adjacent cycles,
which can be calculated as

Uaisr(t) =U(t+ N) = U(t) (1)

where ¢ is the sampling time stamp, N is the number of sample
per cycle, U;4n and U, are the voltage magnitude values at
timestamp ¢ + N and t.

The magnitude difference will be obtained according to
the periodical delta value. However, the voltage magnitude
difference between two adjacent cycles depends on a fixed
sampling instant so the off-nominal frequency cases will have
serious influences on this detector.

To improve the performance of the periodic waveform
detector, a delta-of-delta method is utilized by calculating the
waveform measurement differences twice. Thereafter, the off-
nominal frequency and periodic characteristics of the Uyg; s 7 (¢)
can be removed. The delta-of-delta voltage at timestamp ¢ can
be calculated as,

Udod(t) = Uaifs(t + N) — Uaiss(t) 2

Then the periodic waveform detector ,,(¢) can be expressed
as,

N-1
ru(t) = Y |(Uaoalt +n))| 3)
n=0
To achieve real-time detection, the r,,(t) will be calculated
once new sampling data come in by using a recursive method,

rw(t +1) = ry(t) = [(Udoa(t))| + [(Uaoat + n+1))[  (4)

Based on the detector r,(t), a threshold is designed to
detect anomalies based on the distribution of r,(¢). Since it
is the first round of anomaly detection, a top 5% is chosen as
the threshold value for filtering the anomalies in this research.

C. Frequency domain based Oscillation detector

In addition to the time domain detection, the oscillations
and harmonics generated from DERs can be another sort
of interesting anomaly. As a result of the streaming POW
measurements, arbitrary frequency estimation algorithms can
be utilized in the server rather than in the SMU. In this
paper, an ultra-fast frequency estimation algorithm with a low
calculation burden is deployed on the server side for real-time
frequency estimation and a high reporting rate.
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A 2-cycle DFT-based frequency estimation algorithm is
used to estimate the frequency with a recursive solution. First
of all, the phase angle at timestamp ¢, ¢, are calculated
by using the POW measurements through Discrete Fourier
Transform based methods. Then the frequency at timestamp
t can be calculated by using least squares fitting technology
with a quadratic polynomial function as f(¢). The calculation
burden can be further reduced by deploying this algorithm
on the FNET/GridEye server, which is also discussed in [21].
This process is illustrated in Fig. 3.

Finally, by using a five-second frequency measurement
window, a fast Fourier transform (FFT) is utilized to calculate
the power spectral density of the frequency measurements in
a frequency spectrum, which is denoted as M,,(t). Similarly,
the power density larger than M,y at a single frequency will
be recorded where My, is designed as 5% largest oscillation
magnitude anomalies.

Here, the power density calculated from one-day data is
illustrated in Fig. 4. It provides insight into how to select
the suitable threshold M;p,.. In the last step, the anomalies
captured from both time and frequency domains will be
gathered and utilized for anomaly categorization purposes.

At last, all anomalies triggered by both the time-domain-
based periodic waveform detector and the frequency-domain-
based oscillation detector will be logged and then transferred
into the anomaly library. Through confirming with the local
utility companies, the anomaly labels will be tagged by
comparing the anomaly library to their outage lists.

IV. POW BASED ANOMALY CATEGORIZATION ALGORITHM

A. Extracted physical features

After the anomaly detection, the 5-second POW measure-
ments window is collected to achieve anomaly categorization.
Based on the real-time POW measurements, different typical
physical features from both time and frequency domains are
extracted.

In this section, five types of physical features are calculated.
First of all, the Ug; s s(t) and Ugeq(t) are utilized as two wave-
form features focusing on the waveform distortion features.
To distinguish the typical events including generation trip,
line outage, and load shedding anomalies, the frequency, f(¢),
and RoCoF, RoCoF (t) are extracted since obvious frequency
drop or increase can be observed during these anomalies.
The RoCoFs are calculated by using two adjacent frequency
measurements as a result of the fast frequency changes.
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Additionally, considering that the voltage magnitude
Vi s(t) of the low inertia grid will drop or increase heavily
during the anomaly including faults, generation trip, and load
shedding, the root mean square (RMS) values are further
extracted. Notice that this is not observable in a large power
system due to the voltage regulators and capacitors deployed.
Thus, the Vgas(t) is used as a feature targeting a low
inertia power system. Besides, to avoid misclassification, the
frequency spectrum P(f) will be used to represent the feature
of oscillations and harmonics in the frequency domain.

B. Feature Visualization Analysis

To achieve the automatic anomaly categorization in the
FNET server, the existing anomalies should be labeled man-
ually first according to the outage list from the local utility
companies. Based on the collected POW measurements, the
anomalies include oscillations, generation trips, load shed-
dings, voltage magnitude drops, waveform distortions, faults,
switching, and others are observed.

Six example anomalies from POW, frequency, POW delta-
delta, RoCoF, RMS value of voltage, and power spectral
density responses are illustrated in Fig. 5 to Fig.10, where
obvious features can be observed. Fig. 5 gives the features in
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a typical generation trip, where an obvious voltage magnitude
drop during the anomaly can be observed from both POW and
Veams(t) responses. This magnitude drop is clearly captured
by the POW delta-delta response as two spikes. From the
frequency and RoCoF responses, the frequency dropping and
recovering during the anomaly can be captured. Fig. 6 presents
the behavior of an example fault. There is only one voltage
magnitude drop with a short duration. A small frequency spike
is captured by the frequency and RoCoF responses.

The load shedding in Fig. 7 clearly shows that both the
voltage magnitude and frequency increase which behaves in
the opposite direction as the generation trip. The waveform
distortion is illustrated in Fig. 8(d), since there is a phase
shift, obvious spikes can be observed in the POW delta-delta,
frequency, and RoCoF responses which can be easily missed
from the voltage magnitude response. As shown in Fig. 9, a
switching anomaly usually has a short voltage magnitude drop,
where no obvious frequency change can be captured. Besides,
the oscillations caused by the droop coefficient design from
the diesel generators are confirmed by KIUC. As illustrated in
Fig. 10, obvious oscillations in 3.3 Hz, 6.6 Hz, 9.9 Hz, and 20
Hz can be observed from the power spectral density response.
Notice that the highest oscillation that can be detected by the
proposed algorithm is 720 Hz.
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C. POW-based Anomaly Library

To achieve accurate identification of anomalies, a POW-
based anomaly library is established, where the collected data
set information is listed in Table II. The anomalies collected
within one-year or three months are utilized to perform the
training data set. It should be noted that all the cases have
been confirmed by the power utility company KIUC on Kauai
island.

Moreover, the anomalies have multiple labels from both
time and frequency domain aspects. For example, a waveform
distortion anomaly can also be an oscillation anomaly (denoted
as WO). In contrast, a waveform distortion anomaly without
oscillation is denoted as WNO. Other anomalies are switch-
ing with/without oscillations (SO/SNO), fault with/without
oscillations (FO/FNO), generation trips with/without oscil-
lations (GO/GNO), load shedding with/without oscillations
(LO/LNO), and others with/without oscillations (OO/ONO).
In the anomaly categorization process, these twelve categories
will be utilized.

To capture the feature of the abovementioned measure-
ments, 24 features are available which can be classified
into frequency-related, voltage-related, POW-related, and fre-
quency spectrum-related, as listed in Table III. For each fea-



TABLE II
ANOMALY LABELS FOR CATEGORIZATION

Labels for Number of anomalies

anomalies Oscillation Non-oscillation
Switching SO 13 SNO 2295
Waveform distortions WO 316 WNO 385
Others 00 23 ONO 533
Generation trips GO 17 GNO 47
Faults FO 9 FNO 119

Load shedding LO 3 LNO 7

TABLE III

DESIGNED ANOMALY FEATURE SETS

Features
f(t), RoCoF(t), VRas(t), Uaiyy(t),
Udod(t), and P(f)
f(t) and RoCoF (t)

Feature sets

All features

Frequency related

Voltage related Vems(t)
POW related Ugigg(t) and Ugoq(t)
Frequency spectrum related P(f)

ture, the mean, variance, skewness, and kurtosis are calculated.

D. Random forest Based Anomaly categorization

Considering the online deployment requirement of anomaly
categorization, a practical and field-deployment-based algo-
rithm is chosen in this paper. Currently, the frequency and
phase-angle-based anomaly categorization algorithm deployed
on FNET/GridEye is a decision tree [27], which is one of
the typical threshold-based algorithms. However, it still suffers
from features with strong correlations.

To overcome this problem, a random-forest-based algorithm
is introduced in this paper. Compared with the decision
tree, the proposed random-forest-based algorithm utilizes the
decision tree as a basic categorization tool and thus upgrades
it by using integrated learning algorithms.

The random forest-based algorithm implemented in this
research consists of multiple decision trees and voting tech-
nology, of which the structure is illustrated in Fig. 11. Here,
all designed anomaly feature sets are listed in Table III. All
features are also classified into different combinations.

In the next step, multiple data subsets are generated as S to
Sn, where N is the number of trees. Given the data subsets,
decision trees 77 to Ty, are generated. The validation data
sets are used to calculate the validation accuracies, A7 to Ay
which are used to vote for the random forest-based anomaly
categorization results. In this regard, a robust forest is built up
by using voting-based methods.

The overall framework of the random-forest-based algo-
rithm is illustrated in Fig. 3. First, the features and anomaly
labels of the anomalies are generated as inputs to the
random-forest-based algorithm. Moreover, the parameters in
the random-forest-based algorithm, including the minimum
leaf number, the minimum predictor number, and the tree
number are optimized by using Bayesian Optimization. Impor-
tantly, since the algorithm is deployed on the FNET/GridEye
system, the anomaly library can be enriched gradually from
the captured anomalies.
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Fig. 11. The flow chart of the random forest-based algorithm.

E. Visualizations of the anomalies and features

To verify the categorization ability of the random-forest, the
exacted features and the learned features are visualized using
the t-Distributed Stochastic Neighbor Embedding (t-SNE). The
t-SNE is a dimensional reduction method, and it can be used to
reduce the dimensions of the input data into two dimensions.

The results are illustrated in Fig. 12. The results from Fig.
12(a) demonstrate that the features from different categories
overlap with each other, indicating that it is challenging to
identify the anomalies. In contrast, the features of Fig. 12(b)
show that almost all the features have been differentiated from
each other. This means that different types of anomalies can
be effectively identified by using the proposed method.
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Fig. 12. Visualizations of the anomalies and features of after training based
on t-SNE. Each number denotes one class and number % corresponding to
i % 10. (a) features before training, (b) features after learning.

V. EXPERIMENT RESULTS
A. Parameter fine tuning

To further verify the performance of the proposed method,
different experiments are carried out. To avoid over-fitting,
70%, 15%, and 15% of all the data sets are randomly selected
for training, validation, and testing, respectively. Notice that
the data set distributions are the same for all anomaly cate-
gories. During the optimization, the ten-fold cross-validation
loss is set as the objective function while the above-mentioned
parameters of the random forest algorithm are set as variables.
30 iterations in total are run for each round.

The validity of the selected feature sets is critical for the per-
formance of the proposed methods. To fully demonstrate the
performance of both the parameter optimization and feature



TABLE IV
PERFORMANCE COMPARISON UNDER DIFFERENT FEATURE SETS AND
OPTIMIZATION

Performance
Selected feature sets — ——
Before optimization After optimization
Frequency related 91.71% 91.92%
Voltage related 87.39% 87.46%
POW related 91.54% 91.64%
Frequency spectrum related 83.97% 84.21%
All features 94.23% 94.54%

selection, the average accuracies with multiple combinations
between feature selection and optimization are given in Table
IV. It shows that the accuracy is higher while using the
frequency-related features. Besides, the Ug; ¢ £(t) and Ugoq(t)
related cases are the second highest compared with other
feature selection cases. Additionally, it can be clearly observed
that by using parameter optimization, the overall performance
has been improved to 94.54% when all features are selected.
The primary reason is that more features contain sufficient
information.

To give an in-depth analysis of the results, the confusion ma-
trix is also presented in Fig. 13. Based on both the validation
and test data set with 1166 test cases, it can be concluded that
the most serious confusion is between the waveform distortion
with and without oscillations, which is caused by the lack of
enough power spectral density information. In addition, there
is some confusion about the fault without oscillation, which is
because of the complicated characteristics of the fault and the
similarity between fault and other anomalies such as frequency
spikes and Vgprs(t) drops.

B. Comparison to other algorithms

To verify the performance of the proposed anomaly catego-
rization algorithm, a comparison among Decision tree-based,
random forest-based, support vector machine (SVM)-based
[28], kNN-based [16], Deep Neural Network (DNN)-based
[14], and artificial Neural Network (ANN)-based algorithms
is given in Table V. The feature sets are normalized between
zero and one before conducting the experiments. The Bayesian
optimization is applied to the SVM and kNN-based algorithms
to improve the prediction accuracy. Meanwhile, the network
structures of the Neural Network based algorithms are also
optimized by using particle swarm optimization.

Among the benchmark algorithms, SVM and kNN-based
algorithms are used as the basics as a result of their simple
structures. The ANN and DNN are representing the Neural
Network based machine learning algorithms. Meanwhile, the
decision tree-based and random forest-based algorithms are
tree-based machine learning algorithms. Basically, tree-based
algorithms have simple structures and can be easily deployed
in real-time. In contrast, neural-network-based algorithms have
higher accuracies while they are usually deployed offline. For
each algorithm, the accuracies are calculated under different
feature sets and are discussed according to Table III.

It demonstrated that the performance of AVM and kNN-
based methods based on the frequency and POW-related fea-
ture sets reach 91.88% and 92.57%, respectively. Meanwhile,
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Fig. 13. The confusion matrix of the random forest-based algorithm.

the performance comparison under the frequency-related and
POW-related features shows similar accuracy, indicating that
the POW-related features are as important as the frequency-
related features.

More combinations of the feature sets are tested to have
a comprehensive comparison in the last four rows in Table
III. Again, the overall performance of all algorithms basically
follows the results from the previous discussion. It is worth
mentioning that the overall accuracies can be improved by
using POW-related features which verify that POW-related
features, i.e., Ugirs(t) and Ugoq(t), can provide a comple-
ment to the frequency related features. The performance with
frequency and POW-related features is 2.79% higher than
that using frequency and voltage-related features. Besides,
the performance under spectrum-related features is between
60.45% and 84.21%, which is the lowest one because the
spectral characteristics can be greatly affected by noise.

Additionally, the random-forest-based algorithm has an ac-
curacy as good as that of the DNN-based algorithm which is
better than other basic and decision tree-based algorithms. It
can be observed from Table V that with all features given,
the accuracies from almost all the algorithms are the highest
ones. The DNN, which is one of the most complicated
algorithms, requires GPU to speed up the calculation, whose
accuracy is only 0.48% higher than the random forest. Besides,
from the algorithm complexity point of view, the tree-based
characteristics of the random forest algorithm make it possible
to be deployed in the general hardware system. Therefore, the
random-forest-based algorithm is utilized as the POW-based
anomaly categorization algorithm deployed in the server.

VI. CONCLUSIONS

To enhance the situational awareness capability in low
inertia power systems, this paper presents POW-based anomaly
detection and categorization algorithms. To detect the anomaly,
a real-time POW-based anomaly detection algorithm is de-
veloped based on the delta-delta of the POW measurements
on two adjacent cycles. Meanwhile, one year of POW mea-
surements from four SMUs deployed on Hawaii islands are



TABLE V
PERFORMANCE COMPARISON AMONG DIFFERENT ANOMALY CATEGORIZATION ALGORITHMS

Performance of different algorithms

Selected feature sets
SVM-based [28] kNN-based [16]

ANN-based [29]

DNN-based [14] Decision tree-based Random forest-based

Frequency related 88.60% 90.26% 89.88% 88.83% 89.22% 91.92%
Voltage related 78.24% 81.87% 84.99% 87.84% 84.80% 87.46%
POW related 84.77% 90.50% 88.60% 91.15% 89.43% 91.64%
Frequency spectrum related 60.45% 73.09% 67.36% 75.01% 83.63% 84.21%
Frequency and voltage related 84.97% 91.71% 90.05% 93.94% 91.09% 93.78%
Frequency and POW related 91.88% 92.57% 92.84% 93.42% 91.05% 93.64%
POW and voltage related 86.36% 82.21% 88.31% 93.21% 90.57% 93.09%
All features 87.56% 91.81% 93.37% 95.02% 92.54% 94.54%

collected by using FNET/GridEye system for a case study. [13] S. Brahma, , and et al., “Real-time identification of dynamic events

The feature visualization analysis demonstrates the differences
in several typical physical features. Thereafter, twelve cate-
gories of anomalies are labeled based on twenty-four features
gathered from both time and frequency domains. A random-
forest-based algorithm, as well as Bayesian optimization, are
also developed to identify the anomalies. The performance
comparison under different types of sub-feature sets reveals
that all twenty-four features contribute to anomaly catego-
rization. The comparison among some advanced data-driven-
based algorithms indicates that the proposed random-forest-
based algorithm has an accuracy as high as 94.54% and can
achieve real-time computing.
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